201804uf-davis.jpgApril 16, 2018 (Source: UF) - University of Florida history professor Jack E. Davis is the winner of the 2018 Pulitzer Prize in History for his book “The Gulf: The Making of an American Sea,” the Pulitzer Prize Board announced today. “The Gulf” also won the Kirkus Prize, was a finalist for the National Book Critics Circle Award, was a New York Times Notable Book, and made a number of other “best of” lists in national publications. When Davis first conceived of “The Gulf,” the Deepwater Horizon accident that dumped 130 million gallons of oil into the Gulf of Mexico had not yet happened. That Davis was writing a history of the Gulf around the same time as the largest oil spill in history was coincidental, and allowed him to focus on aspects other than the spill, which he says, “seemed to rob the Gulf of Mexico of its true identity. I wanted to restore it, to show people that the Gulf is more than an oil spill,” he said. “It’s got a rich, natural history connected to Americans, and it’s not integrated into the larger American historical narrative. That’s a wrong I wanted to correct.”

Full UF News Release

201804fsu-misra.jpgApril 9, 2018 (Source: FSU) - New research from Florida State University scientists has found that urban areas throughout the Florida peninsula are experiencing shorter, increasingly intense wet seasons relative to underdeveloped or rural areas.

The study, published in the Nature Partner Journal Climate and Atmospheric Science, provides new insight into the question of land development’s effect on seasonal climate processes.

Using a system that indexed urban land cover on a scale of one to four — one being least urban and four being most urban — the researchers mapped the relationship between land development and length of wet season.

“What we found is a trend of decreasing wet-season length in Florida’s urban areas compared to its rural areas,” said Vasu Misra, associate professor of Earth, Ocean and Atmospheric Science and lead investigator of the study.

Full FSU News Release

Climate and Atmospheric Science Journal Article

201803fiu-abiy.jpgMarch 30, 2018 (Source: FIU) - Small-scale droughts can have big effects on the Florida Everglades. Ph.D. student Anteneh Abiy is digging deep into these abnormally low rainfall events. He doesn’t have to do go too far into weather data to begin his work. 2017 was drier than usual. The Everglades received 6 inches of rainfall less than the annual average.

Fresh water in the Everglades feeds into the Biscayne Aquifer, the main water supply for Broward, Miami-Dade, Monroe and Palm Beach counties. Small-scale drought events have cropped up over the past two decades, leaving lasting impacts on the county’s water supply.

“Drought is a cancer. Its effects creep up little by little and you don’t notice them until it’s too late,” Abiy said. “You can’t predict when drought will happen. But, with the right information, you can design sound strategies to better store water in the Everglades, manage our water supply and take action immediately.”

Full FIU News Release

201803fiu-fourqurean.jpgMarch 27, 2018 (Source: FIU) - Seagrasses in Shark Bay, Australia released massive amounts of carbon dioxide after a devastating heat wave killed them, according to a new study.

More than 22 percent of Shark Bay’s seagrasses died when water temperatures warmed as much as 7 degrees Fahrenheit above normal for more than two months in 2011. Up to 9 million metric tons of carbon dioxide were released — the equivalent of what is released annually by 800,000 homes or 1.6 million cars. Healthy seagrass meadows act as giant reservoirs that store carbon in their soils, leaves and other organic matter.

“As the Earth’s climate changes, we expect to see more and more intense heat waves,” said James Fourqurean, director of FIU’s Center for Coastal Oceans Research and co-author of the study. “This release of carbon to the atmosphere as carbon dioxide will only cause further heating of the atmosphere, heating of the oceans and climate change.”

Full FIU News Release

201803uf-forests.jpgMarch 21, 2018 (Source: UF) - The face of American forests is changing, thanks to climate change-induced shifts in rainfall and temperature that are causing shifts in the abundance of numerous tree species, according to a new paper by University of Florida researchers.

The result means some forests in the eastern U.S. are already starting to look different, but more important, it means the ability of those forests to soak up carbon is being altered as well, which could in turn bring about further climate change.

“Although climate change has been less dramatic in the eastern U.S. compared to some other regions, such as Alaska and the southwestern U.S., we were interested to see if there were signals in forest inventory data that might indicate climate-induced changes in eastern U.S. forests,” said Jeremy Lichstein, senior author and a UF assistant professor of biology. “The changes we documented are easily masked by other disturbances, which is probably why no one had previously documented them. Without a long-term dataset with millions of trees, we probably could not have detected these changes.”

Full UF News Release

Nature Journal Article

201803rsmas-heat.jpgMarch 19, 2018 (Source: UM/RSMAS) Human-caused climate change will drive more extreme summer heat waves in the western U.S., including in California and the Southwest as early as 2020, new research shows. The new analysis of heat wave patterns across the U.S., led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science (UM) based Cooperative Institute for Marine and Atmospheric Science (CIMAS) and colleagues, also found that man-made climate change will be a dominant driver for heat wave occurrences in the Great Lakes region by 2030, and in the Northern and Southern Plains by 2050 and 2070, respectively.

Man-made climate change is the result of increased carbon dioxide and other human-made emissions into the atmosphere.

“These are the years that the human contributions to climate change will become as important as natural variability in causing heat waves,” said lead author Hosmay Lopez, a CIMAS meteorologist based at NOAA’s Atlantic Oceanographic Meteorological Laboratory. “Without human influence, half of the extreme heat waves projected to occur during this century wouldn’t happen.”

The study, published in the March 19, 2018 online issue of the journal Nature Climate Change, has important implications for the growing populations in these regions since heat waves, which are the number one cause of weather-related deaths in the United States, have already increased in number and severity in recent decades and are projected to rise well into the 21st century.

Full UM/RSMAS News Release

Nature Climate Change Journal Article

201803-100-resilient-cities.jpgMarch 14, 2018 (Source: 100 Resilient Cities) - 100 Resilient Cities – Pioneered by The Rockefeller Foundation today released “Safer and Stronger Cities,” a series of policy recommendations for the federal government to help our nation’s urban centers become more resilient in the face of 21st-century challenges. The report, which comes after cities faced an unprecedented series of short-term and long-term challenges in 2017, focuses its recommendations on infrastructure, housing, flood insurance, economic development, and public safety.

Access the full report here: www.100resilientcities.org/safer-and-stronger

February 21, 2018 (Source: American Institute of Biological Sciences via ScienceDaily) - The linkages between environmental health and human well-being are complex and dynamic, and researchers have developed numerous models and theories for describing them. They include attempts to bridge traditional academic boundaries, uniting fields of study under rubrics such as social-ecological frameworks, coupled human and natural systems, ecosystem services, and resilience theory. However, these efforts have been constrained by varying practices and a failure among practitioners to agree on consistent practices.

Writing in BioScience , Jiangxiao Qiu of the University of Florida and his colleagues describe this state of affairs and propose an alternative and practical approach to understanding the interplay of social and ecological spheres: causal chains. The authors describe these chains as an "approach to identifying logical and ordered sequences of effects on how a system responds to interventions, actions, or perturbations." And although causal chains are well established in many fields, the authors highlight that "there is no normative consensus about the principles and guidelines necessary to create causal chains relevant for dealing with human-nature challenges."

By refining and standardizing the causal chain methodology, the authors hope that the drivers of human behavior, and inherently linked social and ecological outcomes can be better understood -- and then acted on. For instance, the authors cite an example of a biophysical system in Kenya in which forests are converted to farmland without the supply of additional nutrients. Without intervention, the consequent soil degradation then results in "food insecurity and reduced household income, while further accelerating the degradation of the remaining forests."

By viewing this cycle through the lens of causal chains, managers might be better able to see ways to break it. Qiu and his colleagues describe a three-phase system for identifying and working with causal chains, designed to permit the assessment of current systems and their responses to management actions. Possible targets for study include food production and pollution interactions, land-use change and its effects on local populations, and the responses of natural and social communities to climate-change-induced severe weather events.

Full News Release

BioScience Journal Article

201802usf-slr.jpgFebruary 12, 2018 (Source: USF) - Twenty-five years of satellite data prove climate models are correct in predicting that sea levels will rise at an increasing rate. In a new study published in the journal Proceedings of the National Academy of Sciences, researchers found that since 1993, ocean waters have moved up the shore by almost 1 millimeter per decade. That’s on top of the 3 millimeter steady annual increase. This acceleration means we’ll gain an additional millimeter per year for each of the coming decades, potentially doubling what would happen to the sea level by 2100 if the rate of increase was constant.

“The acceleration predicted by the models has now been detected directly from the observations. I think this is a game-changer as far as the climate change discussion goes,” said co-author Gary Mitchum, PhD, associate dean and professor at the University of South Florida College of Marine Science. “For example, the Tampa Bay area has been identified as one of 10 most vulnerable areas in the world to sea level rise and the increasing rate of rise is of great concern.”

USF Press Release

PNAS Journal Article

201802fau-turtles.jpgFebruary 8, 2018 (Source: FAU) - Who’s your daddy? No, it’s not a TV clip from “The Jerry Springer Show” to identify who the “real” father is. Rather, it is a groundbreaking study of sea turtle nests and hatchlings using paternity tests to uncover “who are your daddies?”

The study conducted by researchers at Florida Atlantic University and published in PLOS One , is the first to document multiple paternity in loggerhead sea turtle nests in southwest Florida. What started out as a study on female sea turtle promiscuity – females can have multiple partners and can store sperm for more than three months after mating events – is proving to be very good news for this female-biased species facing rising risks of extinction due to climate change.

Due to their accessibility, nesting female sea turtles, nest success, and hatchlings are frequently examined and used for demographic studies and population models (key areas for the management of imperiled species). Yet, there is very limited understanding of the proportion of adult males and males approaching sexual maturity in any sea turtle population. Consequently, male sea turtles’ reproductive behavior is poorly understood and adult sex ratio cannot be estimated directly.

“Studying sex ratios of adult sea turtles in the ocean is logistically difficult because they are widely distributed and males are especially difficult to access because they rarely come to land,” said Jacob Lasala, corresponding author of the study and a Ph.D. student working with Jeanette Wyneken, Ph.D., co-author and a professor in the Department of Biological Sciences at FAU’s Charles E. Schmidt College of Science. “We decided to use a different approach and measure ‘breeding sex ratios’ using genotyping to examine the number of male sea turtles that contribute to nests.” 

Full FAU News Release

201802usf-nature.jpgFebruary 5, 2018 (Source: USF) - Researchers at the University of South Florida have offered a deeper understanding of climate change effects on animal phenology in their study, "A global synthesis of animal phenological responses to climate change", published this week in Nature Climate Change.

By examining more than a thousand records of these phenological shifts dating back to the 1950s, the study revealed that various taxa, like insects, birds, amphibians and mammals, are shifting their seasonal activities at different rates in response to a changing climate.

“We found that cold-blooded species and those with small body sizes are shifting their phenological activities faster, or track changing climates more effectively, than warm-blooded or large-bodied species,” said the study’s lead author Jeremy Cohen, PhD, a postdoctoral researcher in the USF Department of Integrative Biology. “These differences could potentially cause mismatches between interacting species, such as migrating birds and their prey.”

The study also provides the first evidence that different locations have different drivers of climate change-induced phenological shifts. For example, at temperate latitudes, multidecadal trends in temperature were associated with phenological shifts, whereas at tropical latitudes, it was trends in precipitation. Jason Rohr, PhD, a USF professor and co-author of the study, explained that these patterns are sensible because seasonality is generally driven by temperature in temperate regions and rainfall in tropical regions.

Full USF News Release

201802fiu-everglades.jpgFebruary 5, 2018 (Source: FIU) - As sea levels continue to rise, more areas of the coastal Everglades will be susceptible to salt water intrusion, according to a new FIU study.

Sea levels rose 2.2 centimeters annually from 2011 to 2015, according to scientists in FIU’s Southeast Environmental Research Center and FIU’s Sea Level Solutions Center. In 2012, sea levels rose 10 centimeters in the dry season months of December to May and have not subsided. Many factors contributed to the drastic increase in 2012, including melting ice sheets, a strong La Niña season in 2011, and slow ocean currents that allowed sea water to pile up along coastlines. Parts of the coastal Everglades that were once flooded by sea water about 70 percent of the time are now covered by sea water 90 percent of the time.

“Salt water intrudes farther inland when there is a small difference between Everglades fresh water levels and sea level,” said Shimelis Dessu, postdoctoral research associate in the Southeast Environmental Research Center and lead author of the paper. “Salinity is an indicator of the coastal Florida Everglades’ health.”

Full FIU News Release

201801fau-sea-turtle.jpgJanuary 22, 2018 (Source: FAU) - Alarming results from a recent gender ratio study revealed that 99 percent of young green turtles from Australia’s Northern Great Barrier Reef are female and that male sea turtles are disappearing. Closer to home, researchers from Florida Atlantic University have documented a similar trend in sea turtle hatchlings in southeast Florida. Since 2002, they have studied sea turtles in Palm Beach County and discovered that 97 to 100 percent of the hatchlings have been female. In a study published in Zoology , FAU researchers are the first to show why and how moisture conditions inside the nest affect the development and sex ratios of turtle embryos. They are the first to estimate sex ratios using a male-specific, transcriptional molecular marker Sox9, a marker of testis development in sea turtles and freshwater turtles. The researchers found that the coolest and the wettest substrates produce 100 percent males compared to 42 percent males from the warmest and driest treatment. They also found that embryonic growth appears to be more sensitive to temperature at earlier stages of development and to moisture at later stages.  “During incubation, the turtle embryo grows inside the nest from a few cells to a fully formed and independent organism at hatching,” said Jeanette Wyneken, Ph.D., author of the study and a professor of biological sciences in FAU’s Charles E. Schmidt College of Science. “For proper development, embryos require an appropriate range of temperature, moisture, salinity, and respiratory gases.”

(Photo credit: Jay Paredes)

201801fsu-pau.jpgJanuary 19, 2018 (Source: FSU) - New research from a Florida State University scientist has revealed a surprising relationship between surging atmospheric carbon dioxide and flower blooms in a remote tropical forest. FSU researchers studying the rich tropical forests of Panama’s Barro Colorado Island found that climbing rates of carbon dioxide have set the stage for a multidecade increase in overall flower production. The findings were outlined in a paper published in the journal Global Change Biology. “It’s really remarkable,” said Assistant Professor of Geography Stephanie Pau, who led the study. “Over the past several decades, we’ve seen temperatures warming and carbon dioxide increasing, and our study found that this tropical forest has responded to that increase by producing more flowers.”

201801fiu-scientists-reflect.jpgJanuary 8, 2018 (Source: FIU/CASE News) - FIU Department of Biological Sciences professor Philip Stoddard was recently featured in an article by The Center for Public Integrity regarding the effects of climate change on the state of Florida.

Philip Stoddard and his wife are saving money to prepare for the day climate problems render their home worthless and force them out. Stoddard lives three miles inland in an area that would be largely submerged — along with much of South Florida — under what the federal government considers a worst-case but worryingly plausible scenario by the end of the century. Some Florida scientists expect even higher sea-level rise. Stoddard is focused on keeping the city livable as long as possible, which means battling a faster-arriving consequence of a warming world.

Stoddard, looking into fixes, sees a need for hard conversations with residents of his city’s lowest-lying neighborhoods. Do they want to pay for expensive upgrades or risk owning homes without working toilets? He sees a future where some communities get ahead of climate problems and others are overwhelmed. Meanwhile, he said, his utility company keeps building gas plants that emit even more of the carbon pollution fueling this slow-motion tragedy.

“It’s going to cost more money, it’s going to pollute the environment — it’s like, why are they doing it?” said Stoddard, a fierce FPL critic. The answer, in his view: “They own natural gas.”

Read the full article for more information on how Florida is affected by climate change.

201801barnett.jpgJanuary 6, 2018 (Source: UF/Bob Graham Center) - Award-winning journalist and author Cynthia Barnett is joining the University of Florida's Bob Graham Center for Public Service as Environmental Fellow in Residence. Barnett is an environmental journalist who has covered water and climate stories worldwide, from the decline in Florida's signature springs, to epic drought in California and Australia, to the rainiest place on Earth in Cherrapunji, India. She is the author of three books on water, including her latest Rain: A Natural and Cultural History, longlisted for the National Book Award, a finalist for the PEN/E.O. Wilson Award for Literary Science writing, winner of the Gold medal in the Florida Book Awards for best general nonfiction and named among the best nonfiction books of 2015 by NPR’s Science Friday, the Boston Globe, the Tampa Bay Times, the Miami Herald and others. Barnett's appointment is shared with UF’s College of Journalism and Communications, where she is Environmental Journalist in Residence and oversees student environmental reporting projects such as award-winning Blue Ether and the recent series Energy Burden. She will continue to teach in CJC and will begin teaching courses for the Graham Center’s public leadership minor. Barnett will also help lead student environmental initiatives and team up across disciplines with UF faculty and students who are working to improve public understanding of complex environmental issues such as climate change.

UF/Bob Graham Center News Release

201801Conversation.jpgJanuary 1, 2018 (Source: The Conversation) - Arnoldo Valle-Levinson and Andrea Dutton (UF) have published an article in The Conversation describing an "x-factor" in coast flooding: natural climate patterns that create hot spots of rapid sea level rise. In a study they co-authored with colleague Jon Martin (UF), they showed that two converging natural climate processes created a “hot spot” from Cape Hatteras, North Carolina to Miami where sea levels rose six times faster than the global average between 2011 and 2015. They also showed that such hot spots have occurred at other points along the Eastern Seaboard over the past century. Now they see indications that one is developing in Texas and Louisiana, where it likely amplified flooding during Harvey – and could make future coastal storms more damaging.

The Conversation Article

201801fsu-mccoy.jpgJanuary 5, 2018 (Source: FSU) - Accelerating ocean acidification could be transforming the fundamental structure of California mussel shells, according to a new report from a Florida State University-led team of scientists. For thousands of years, California mussel shells have shared a relatively uniform mineralogical makeup — long, cylindrical calcite crystals ordered in neat vertical rows with crisp, geometric regularity. But in a study published this week in the journal Global Change Biology, researchers suggest that escalating rates of ocean acidification are shaking up that shell mineralogy on its most basic structural levels. “What we’ve seen in more recent shells is that the crystals are small and disoriented,” said Assistant Professor of Biological Science Sophie McCoy, who led the study. “These are significant changes in how these animals produce their shells that can be tied to a shifting ocean chemistry.”

201712fiu-flood.jpgDecember 13, 2017 (Source: FIU) - South Florida raises groundwater levels to fight salt water intrusion, the threat of flooding from within will only increase, according to FIU research. Current groundwater levels in South Florida are a major contributor to inland flood damages, especially during the wet season or extreme rain events. Traditional flood models account for drainage systems, rivers, streams and canals but do not account for the groundwater beneath our feet. FIU hydrologist Michael Sukop has released a model that focuses on South Florida’s groundwater as a cause of flooding. “Many current flood models treat the land as an impermeable surface when, in fact, South Florida’s land surface is highly permeable and the water table is very close to the surface,” said Sukop, a professor in FIU’s Department of Earth and Environment. “Our model offers a different way of understanding and addressing the flooding problem. When it rains hard enough, or when tides are high, the water table can come all the way to the surface and cause flooding.”

FIU News Release

Science of The Total Environment Journal Article