Alza, C. M., Donnelly, M. A., & Whitfield, S. M. (2016). Additive effects of mean temperature, temperature variability, and chlorothalonil to red-eyed treefrog (Agalychnis callidryas) larvae: Temperature variability and chlorothalonil toxicity. Environ Toxicol Chem, 35(12), 2998–3004.
|
Dee, L. E., Miller, S. J., Peavey, L. E., Bradley, D., Gentry, R. R., Startz, R., et al. (2016). Functional diversity of catch mitigates negative effects of temperature variability on fisheries yields. Proc. R. Soc. B, 283(1836), 20161435.
Abstract: Temperature variation within a year can impact biological processes driving population abundances. The implications for the ecosystem services these populations provide, including food production from marine fisheries, are poorly understood. Whether and how temperature variability impacts fishery yields may depend on the number of harvested species and differences in their responses to varying temperatures. Drawing from previous theoretical and empirical studies, we predict that greater temperature variability within years will reduce yields, but harvesting a larger number of species, especially a more functionally diverse set, will decrease this impact. Using a global marine fisheries dataset, we find that within-year temperature variability reduces yields, but current levels of functional diversity (FD) of targeted species, measured using traits related to species' responses to temperature, largely offset this effect. Globally, high FD of catch could avoid annual losses in yield of 6.8% relative to projections if FD were degraded to the lowest level observed in the data. By contrast, species richness in the catch and in the ecosystem did not provide a similar mitigating effect. This work provides novel empirical evidence that short-term temperature variability can negatively impact the provisioning of ecosystem services, but that FD can buffer these negative impacts.
|
Nicholson, S. E., Nash, D. J., Chase, B. M., Grab, S. W., Shanahan, T. M., Verschuren, D., et al. (2013). Temperature variability over Africa during the last 2000 years. The Holocene, 23(8), 1085–1094.
Abstract: A growing number of proxy, historical and instrumental data sets are now available from continental Africa through which past variations in temperature can be assessed. This paper, co-authored by members of the PAGES Africa2k Working Group, synthesises published material to produce a record of temperature variability for Africa as a whole spanning the last 2000 years. The paper focuses on temperature variability during the Medieval Climate Anomaly' (MCA), Little Ice Age' (LIA) and late 19th-early 21st centuries. Warmer conditions during the MCA are evident in records from Lake Tanganyika in central Africa, the Ethiopian Highlands in northeastern Africa, and Cango Cave, the Kuiseb River and Wonderkrater in southern Africa. Other records covering the MCA give ambiguous signals. Warming appears to have been greater during the early MCA (c. ad 1000) in parts of southern Africa and during the later MCA (from ad 1100) in Namibia, Ethiopia and at Lake Tanganyika. LIA cooling is evident in Ethiopian and southern African pollen records and in organic biomarker data from Lake Malawi in southeastern tropical Africa, while at Lake Tanganyika the temperature depression appears to have been less consistent. A warming trend in mean annual temperatures is clearly evident from historical and instrumental data covering the late 19th to early 21st centuries. General warming has occurred over Africa since the 1880s punctuated only by a period of cooling in the mid 20th century. The rate of temperature increase appears to have accelerated towards the end of the 20th century. The few long high-resolution proxy records that extend into the late 20th century indicate that average annual temperatures were 1-2 degrees C higher in the last few decades than during the MCA.
|