Bellomo, K., & Clement, A. C. (2015). Evidence for weakening of the Walker circulation from cloud observations: Weakening of Walker Circulation. Geophys. Res. Lett., 42(18), 7758–7766.
Abstract: Climate models simulate a weakening of the Walker circulation in response to increased greenhouse gases, but it has not been possible to detect this weakening with observations because there are not direct measurements of atmospheric circulation strength. Indirect measurements, such as equatorial gradients in sea level pressure (SLP), exhibit trends of inconsistent sign. In this study we estimate the change in midtropospheric velocity ((500)) from observed change in cloud cover, which we argue is more closely tied to the overturning circulation than indirect measurements of SLP at the surface. Our estimates suggest a weakening and eastward shift of the Walker circulation over the last century. Because changes in cloud cover in Atmospheric Model Intercomparison Project simulations forced with increased sea surface temperature are remarkably similar in pattern, sign, and magnitude, we assert that the observed changes in cloud cover and the associated weakening of Walker circulation are at least in part externally forced.
|
He, J., & Soden, B. J. (2015). Anthropogenic Weakening of the Tropical Circulation: The Relative Roles of Direct CO[sub:2]Forcing and Sea Surface Temperature Change. J. Climate, 28(22), 8728–8742.
Abstract: There is a lack of consensus on the physical mechanisms that drive the anthropogenic weakening of tropical circulation. This study investigates the relative roles of direct CO2 forcing, mean SST warming, and the pattern of SST change on the weakening of the tropical circulation using an ensemble of AMIP and aquaplanet simulations. In terms of the mean weakening of the tropical circulation, the SST warming dominates over the direct CO2 forcing through its control over the tropical mean hydrological cycle and tropospheric stratification. In terms of the spatial pattern of circulation weakening, however, the three forcing agents are all important contributors, especially over the ocean. The increasing CO2 weakens convection over ocean directly by stabilizing the lower troposphere and indirectly via the land-sea warming contrast. The mean SST warming drives strong weakening over the centers and edges of convective zones. The pattern of SST warming plays a crucial role on the spatial pattern of circulation weakening over the tropical Pacific.The anthropogenic weakening of the Walker circulation is mostly driven by the mean SST warming. Increasing CO2 strengthens the Walker circulation through its indirect effect on land-sea warming contrast. Changes in the upper-level velocity potential indicate that the pattern of SST warming does not weaken the Walker circulation despite being El Nino-like. A weakening caused by the mean SST warming also dominates changes in the Hadley circulation in the AMIP simulations. However, this weakening is not simulated in the Southern Hemisphere in coupled simulations.
|
Ma, J., Foltz, G. R., Soden, B. J., Huang, G., He, J., & Dong, C. (2016). Will surface winds weaken in response to global warming? Environ. Res. Lett., 11(12), 124012.
|