Kleindl, W., Stoy, P., Binford, M., Desai, A., Dietze, M., Schultz, C., et al. (2018). Toward a Social-Ecological Theory of Forest Macrosystems for Improved Ecosystem Management. Forests, 9(4), 200.
Abstract: The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?
|
Lorenzen, K., Ainsworth, C. H., Baker, S. M., Barbieri, L. R., Camp, E. V., Dotson, J. R., et al. (2017). Climate change impacts on Florida's fisheries and aquaculture sectors and options for adaptation. In E. P. Chassignet, J. W. Jones, V. Misra, & J. Obeysekera (Eds.), Florida's climate: Changes, variations, & impacts (pp. 427–455). Gainesville, FL: Florida Climate Institute.
Abstract: Florida supports diverse marine and freshwater fisheries and a significant aquaculture industry with a combined economic impact of approximately 15 billion US$. We begin by describing the characteristics of the different fisheries and aquaculture sectors. This is followed by a description of the relevant climate change and confounding drivers. We then present an integrated social-ecological systems framework for analyzing climate change impacts and apply this framework to the different fisheries and aquaculture sectors. We highlight how the characteristics of each sector gives rise to distinct expected climate change impacts and potential adaptation measures. We conclude with general considerations for monitoring and adaptation.
|
Mathez-Stiefel, S. - L., Peralvo, M., Báez, S., Rist, S., Buytaert, W., Cuesta, F., et al. (2017). Research Priorities for the Conservation and Sustainable Governance of Andean Forest Landscapes. Mountain Research and Development, 37(3), 323–339.
|
Qiu, J., Carpenter, S. R., Booth, E. G., Motew, M., Zipper, S. C., Kucharik, C. J., et al. (2018). Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecological Applications, 28(1), 119–134.
|
Spiegal, S., Bestelmeyer, B. T., Archer, D. W., Augustine, D. J., Boughton, E. H., Boughton, R. K., et al. (2018). Evaluating strategies for sustainable intensification of US agriculture through the Long-Term Agroecosystem Research network. Environ. Res. Lett., 13(3), 034031.
|