Florida Climate Institute
Join Us •  E-Newsletter Signup    Follow FCI on Facebook  Follow FCI on Twitter  Follow FCI on LinkedIn
Cross-disciplinary climate research in service of society
  • Home
  • About
    • The Issue
    • Executive Board
    • Staff
  • Events
    • Upcoming Events
      • Florida
      • Other
  • Projects
    • All Projects
    • Ecosystems
      • Agriculture
      • Coastal
      • Terrestrial
    • Natural Resources
      • Climate Sciences
      • Water
      • Energy
      • Land
    • Human Resources
      • Human Dimensions
      • Extension
      • Education
    • Working Groups
  • Resources
    • Data Sets
      • Big Rain Events in SE
      • FISH50
      • Regional Downscaling
      • Seasonal Forecasts
      • Visualization Tool
    • Publications
      • All
      • Journal Articles
      • Reports
      • White Papers
    • Presentations
    • Links
    • Environmental Minute
    • Headline News Archive
    • Newsletters
    • FAQs
  • Opportunities
    • Funding
    • Employment
  • Affiliates
    • List All Affiliates
    • Search By Map
    • Join Us / Register
    • Login
  • Contact

Publications

Home | Show All | Simple Search | Advanced Search | Journal Articles | Reports | White Papers
Login
Quick Search:
...
1-3 of 3 records found matching your query:

toggle visibility
Search within Results:
...
Display Options:

Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print
Hernández, J. L., Hwang, S., Escobedo, F., Davis, A. H., & Jones, J. W. (2012). Land Use Change in Central Florida and Sensitivity Analysis Based on Agriculture to Urban Extreme Conversion. Wea. Climate Soc., 4(3), 200–211.
toggle visibility
Abstract: This paper explored recent land use and land cover change in western central Florida, examining both socioeconomic and biophysical influences on land transformation and the impacts of that change. Between 1995 and 2006, a growth in population resulted in the conversion of agricultural areas, grasslands, and upland forests to urban areas. Additionally, the amount of extractive land uses (e.g., mining) increased by 21.8%, water reservoirs by 19.9%, and recreation areas by 13.3%. Regional climate modeling experiments suggest that the overall effects of land use change (LUC) on mesocale climates in summer days resulted in modified temperatures that were modulated by the new LU characteristics, local and synoptic atmospheric circulations, and the distance of rural and urban land uses from the shoreline. The difference between the extreme and actual LU simulations for temperature, wind speed, wind direction, and precipitation presented higher variability in the inland urbanized and rural zones. Results can be used to better understand the basic influences of LUC and urbanization on key climate parameters, and urban heat island effects in peninsular Florida under typical weather conditions.
Keywords: Land surface, Heat islands, Sea breezes, Anthropogenic effects, Biosphere-atmosphere interaction, Regional models
Permanent link
 | Save citation:  RTF  PDF  LaTeX
 | Export record:  Atom XML  MODS XML  ODF XML
details   doi
Kanamitsu, M., Yulaeva, E., Li, H., & Hong, S. - Y. (2013). Catalina Eddy as revealed by the historical downscaling of reanalysis. Asia-Pacific J Atmos Sci, .
toggle visibility
Abstract: Climatological properties, dynamical and thermodynamical characteristics of the Catalina Eddy are examined from the 61 years NCEP/NCAR Reanalysis downscaled to hourly 10 km resolution. The eddy is identified as a mesoscale cyclonic circulation confined to the Southern California Bight. Pattern correlation of wind direction against the canonical Catalina Eddy is used to extract cases from the downscaled analysis. Validation against published cases and various observations confirmed that the downscaled analysis accurately reproduces Catalina Eddy events. A composite analysis of the initiation phase of the eddy indicates that no apparent large-scale cyclonic/anti-cyclonic large-scale forcing is associated with the eddy formation or decay. The source of the vorticity is located at the coast of the Santa Barbara Channel. It is generated by the convergence of the wind system crossing over the San Rafael Mountains and the large-scale northwesterly flow associated with the subtropical high. This vorticity is advected towards the southeast by the northwesterly flow, which contributes to the formation of the streak of positive vorticity. At 6 hours prior to the mature stage, there is an explosive generation of positive vorticity along the coast, coincident with the phase change of the sea breeze circulation (wind turning from onshore to offshore), resulting in the convergence all along the California coast. The generation of vorticity due to convergence along the coast together with the advection of vorticity from the north resulted in the formation of southerly flow along the coast, forming the Catalina Eddy. The importance of diurnal variation and the lack of large-scale forcing are new findings, which are in sharp contrast to prior studies. These differences are due to the inclusion of many short-lived eddy events detected in our study which have not been included in other studies.
Keywords: Catalina Eddy; vorticity; diurnal variation; sea breeze
Permanent link
 | Save citation:  RTF  PDF  LaTeX
 | Export record:  Atom XML  MODS XML  ODF XML
details   doi
Misra, V., Selman, C., Waite, A. J., Bastola, S., & Mishra, A. (2017). Terrestrial and ocean climate of the 20th century. In E. P. Chassignet, J. W. Jones, V. Misra, & J. Obeysekera (Eds.), Florida's climate: Changes, variations, & impacts (pp. 485–509). Gainesville, FL: Florida Climate Institute.
toggle visibility
Abstract: The Florida peninsula, with its close proximity to the equator surrounded by robust surface and deep water ocean currents, has a unique climate. Generally, its climate is mild with variations on numerous time scales, punctuated by periodic extreme weather events. In this chapter, we review the mechanisms by which some well-known natural variations impact the regional climate and modulate the occurrence of extreme weather over Florida and its neighboring oceans. In addition, we explore the role of land cover and land use changes on the regional climate over the same area. It is made apparent from the review that remote variations of climate have an equally important impact on the regional climate of Florida as the local changes to land cover and land use.
Keywords: Seasonal cycle; Diurnal variations; Sea breeze; ENSO; Tropical cyclones; Hurricanes; AWP; AMO; PDO; PIZA
Permanent link
 | Save citation:  RTF  PDF  LaTeX
 | Export record:  Atom XML  MODS XML  ODF XML
details   doi
Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print

toggle visibility
Save Citations:
Export Records:

Home CQL Search  |  Library Search  |  Show Record  |  Extract Citations Help

logo-fau-2Florida International UniversityFlorida State UniversityUniversity of Central FloridaUniversity of Floridalogo-um-2University of South Florida

The Florida Climate Institute (FCI) is a multi-disciplinary network of national and international research and public organizations, scientists, and individuals concerned with achieving a better understanding of climate variability and change.

Copyright © Florida Climate Institute. All rights reserved.