Ditri, A., Minnett, P., Liu, Y., Kilpatrick, K., & Kumar, A. (2018). The Accuracies of Himawari-8 and MTSAT-2 Sea-Surface Temperatures in the Tropical Western Pacific Ocean. Remote Sensing, 10(2), 212.
|
Erb, M. P., Broccoli, A. J., Graham, N. T., Clement, A. C., Wittenberg, A. T., & Vecchi, G. A. (2015). Response of the Equatorial Pacific Seasonal Cycle to Orbital Forcing. J. Climate, 28(23), 9258–9276.
Abstract: The response of the equatorial Pacific Ocean's seasonal cycle to orbital forcing is explored using idealized simulations with a coupled atmosphere-ocean GCM in which eccentricity, obliquity, and the longitude of perihelion are altered while other boundary conditions are maintained at preindustrial levels. The importance of ocean dynamics in the climate response is investigated using additional simulations with a slab ocean version of the model. Precession is found to substantially influence the equatorial Pacific seasonal cycle through both thermodynamic and dynamic mechanisms, while changes in obliquity have only a small effect. In the precession experiments, western equatorial Pacific SSTs respond in a direct thermodynamic manner to changes in insolation, while the eastern equatorial Pacific is first affected by the propagation of thermocline temperature anomalies from the west. These thermocline signals result from zonal wind anomalies associated with changes in the strength of subtropical anticyclones and shifts in the regions of convection in the western equatorial Pacific. The redistribution of heat from these thermocline signals, aided by the direct thermodynamic effect of insolation anomalies, results in large changes to the strength and timing of the eastern equatorial Pacific seasonal cycle. A comparison of 10 CMIP5 mid-Holocene experiments, in which the primary forcing is due to precession, shows that this response is relatively robust across models. Because equatorial Pacific SST anomalies have local climate impacts as well as nonlocal impacts through teleconnections, these results may be important to understanding paleoclimate variations both inside and outside of the tropical Pacific.
|
Hertzberg, J. E., Schmidt, M. W., Bianchi, T. S., Smith, R. W., Shields, M. R., & Marcantonio, F. (2016). Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights from the Holocene and Last Glacial Maximum. Earth and Planetary Science Letters, 434, 320–332.
Abstract: The use of the TEX86TEX86 temperature proxy has thus far come to differing results as to whether TEX86TEX86 temperatures are representative of surface or subsurface conditions. In addition, although TEX86TEX86 temperatures might reflect sea surface temperatures based on core-top (Holocene) values, this relationship might not hold further back in time. Here, we investigate the TEX86TEX86 temperature proxy by comparing TEX86TEX86 temperatures to Mg/Ca temperatures of multiple species of planktonic foraminifera for two sites in the eastern tropical Pacific (on the Cocos and Carnegie Ridges) across the Holocene and Last Glacial Maximum. Core-top and Holocene View the MathML sourceTEX86H temperatures at both study regions agree well, within error, with the Mg/Ca temperatures of Globigerinoides ruber , a surface dwelling planktonic foraminifera. However, during the Last Glacial Maximum, View the MathML sourceTEX86H temperatures are more representative of upper thermocline temperatures, and are offset from G. ruber Mg/Ca temperatures by 5.8 °C and 2.9 °C on the Cocos Ridge and Carnegie Ridge, respectively. This offset between proxies cannot be reconciled by using different TEX86TEX86 temperature calibrations, and instead, we suggest that the offset is due to a deeper export depth of GDGTs at the LGM. We also compare the degree of glacial cooling at both sites based on both temperature proxies, and find that View the MathML sourceTEX86H temperatures greatly overestimate glacial cooling, especially on the Cocos Ridge. This study has important implications for applying the TEX86TEX86 paleothermometer in the eastern tropical Pacific.
|
Kerns, B. W., & Chen, S. S. (2015). Subsidence Warming as an Underappreciated Ingredient in Tropical Cyclogenesis. Part I: Aircraft Observations. J. Atmos. Sci., 72(11), 4237–4260.
Abstract: The development of a compact warm core extending from the mid-upper levels to the lower troposphere and related surface pressure falls leading to tropical cyclogenesis (TC genesis) is not well understood. This study documents the evolution of the three-dimensional thermal structure during the early developing stages of Typhoons Fanapi and Megi using aircraft dropsonde observations from the Impact of Typhoons on the Ocean in the Pacific (ITOP) field campaign in 2010. Prior to TC genesis, the precursor disturbances were characterized by warm (cool) anomalies above (below) the melting level (similar to 550 hPa) with small surface pressure perturbations. Onion-shaped skew T-logp profiles, which are a known signature of mesoscale subsidence warming induced by organized mesoscale convective systems (MCSs), are ubiquitous throughout the ITOP aircraft missions from the precursor disturbance to the tropical storm stages. The warming partially erodes the lower-troposphere (850-600 hPa) cool anomalies. This warming results in increased surface pressure falls when superposed with the upper-troposphere warm anomalies associated with the long-lasting MCSs/cloud clusters. Hydrostatic pressure analysis suggests the upper-level warming alone would not result in the initial sea level pressure drop associated with the transformation from a disturbance to a TC. As Fanapi and Megi intensify into strong tropical storms, aircraft flight-level (700 hPa) and dropsonde data reveal that the warm core extends down to 850-600 hPa and has some characteristics of subsidence warming similar to the eyes of mature TCs.
|
Larson, S. M., Pegion, K. V., & Kirtman, B. P. (2018). The South Pacific Meridional Mode as a Thermally Driven Source of ENSO Amplitude Modulation and Uncertainty. J. Climate, .
Abstract: This study seeks to identify thermally driven sources of ENSO amplitude and uncertainty, as they are relatively unexplored compared to wind-driven sources. Pacific meridional modes are argued to be wind triggers for ENSO events. This study offers an alternative role for the South Pacific meridional mode (SPMM) in ENSO dynamics, not as an ENSO trigger, but as a coincident source of latent heat flux (LHF) forcing of ENSO SSTA that, if correctly (incorrectly) predicted, could reduce (increase) ENSO prediction errors. We utilize a coupled model simulation in which ENSO variability is perfectly periodic and each El Niño experiences identical wind stress forcing. Differences in El Niño amplitude are primarily thermally driven via the SPMM. When El Niño occurs coincidentally with positive phase SPMM, the positive SPMM LHF anomaly counteracts a fraction of the LHF damping of El Niño, allowing for a more intense El Niño. If the SPMM phase is instead negative, the SPMM LHF amplifies the LHF damping of El Niño, reducing the event's amplitude. Therefore, SPMM LHF anomalies may either constructively or destructively interfere with coincident ENSO events, thus modulating the amplitude of ENSO. The ocean also plays a role, as the thermally forced SSTA is then advected westward by the mean zonal velocity, generating a warming or cooling in the ENSO SSTA tendency in addition to the wind-forced component. Results suggest that in addition to wind-driven sources, there exists a thermally driven piece to ENSO amplitude and uncertainty that is generally overlooked. Links between the SPMM and Pacific decadal variability are discussed.
|