Florida Climate Institute
Join Us •  E-Newsletter Signup    Follow FCI on Facebook  Follow FCI on Twitter  Follow FCI on LinkedIn
Cross-disciplinary climate research in service of society
  • Home
  • About
    • The Issue
    • Executive Board
    • Staff
  • Events
    • Upcoming Events
      • Florida
      • Other
  • Projects
    • All Projects
    • Ecosystems
      • Agriculture
      • Coastal
      • Terrestrial
    • Natural Resources
      • Climate Sciences
      • Water
      • Energy
      • Land
    • Human Resources
      • Human Dimensions
      • Extension
      • Education
    • Working Groups
  • Resources
    • Data Sets
      • Big Rain Events in SE
      • FISH50
      • Regional Downscaling
      • Seasonal Forecasts
      • Visualization Tool
    • Publications
      • All
      • Journal Articles
      • Reports
      • White Papers
    • Presentations
    • Links
    • Environmental Minute
    • Headline News Archive
    • Newsletters
    • FAQs
  • Opportunities
    • Funding
    • Employment
  • Affiliates
    • List All Affiliates
    • Search By Map
    • Join Us / Register
    • Login
  • Contact

Publications

Home | Show All | Simple Search | Advanced Search | Journal Articles | Reports | White Papers
Login
Quick Search:
...
1-1 of 1 record found matching your query:

toggle visibility
Search within Results:
...
Display Options:

Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print
Scheitlin, K. N., Mesev, V., & Elsner, J. B. (2013). Polyline averaging using distance surfaces: A spatial hurricane climatology. Computers & Geosciences, 52, 126–131.
toggle visibility
Abstract: The US Gulf states are frequently hit by hurricanes, causing widespread damage resulting in economic loss and occasional human fatalities. Current hurricane climatologies and predictive models frequently omit information on the spatial characteristics of hurricane movement their linear tracks. We investigate the construction of a spatial hurricane climatology that condenses linear tracks to one-dimensional polylines. With the aid of distance surfaces, an average hurricane track is calculated by summing polylines as part of a grid-based algorithm. We demonstrate the procedure on a particularly vulnerable coastline around the city of Galveston in Texas, where the tracks of the closest storms to Galveston are also weighted by an inverse distance function. Track averaging is also applied as a means of interpolating possible paths of historical storms where records are sporadic observations, and sometimes anecdotal. We offer the average track as a convenient regional summary of expected hurricane movement. The average track, together with other hurricane attributes, also provides a means to assess the expected local vulnerability of property and environmental damage.
Keywords: Hurricane; Linear tracks; Geovisualization; Distance surfaces; Climate study
Permanent link
 | Save citation:  RTF  PDF  LaTeX
 | Export record:  Atom XML  MODS XML  ODF XML
details   doi
Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print

toggle visibility
Save Citations:
Export Records:

Home CQL Search  |  Library Search  |  Show Record  |  Extract Citations Help

logo-fau-2Florida International UniversityFlorida State UniversityUniversity of Central FloridaUniversity of Floridalogo-um-2University of South Florida

The Florida Climate Institute (FCI) is a multi-disciplinary network of national and international research and public organizations, scientists, and individuals concerned with achieving a better understanding of climate variability and change.

Copyright © Florida Climate Institute. All rights reserved.