Bjorndal, K. A., Chaloupka, M., Saba, V. S., Diez, C. E., van Dam, R. P., Krueger, B. H., et al. (2016). Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective. Ecosphere, 7(5), e01279.
Abstract: Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills -3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Nino Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = -0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs.
|
Camp, E. F., Smith, D. J., Evenhuis, C., Enochs, I., Manzello, D., Woodcock, S., et al. (2016). Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH. Proc. R. Soc. B, 283(1831), 20160442.
Abstract: Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.
|
Clark, P. U., He, F., Golledge, N. R., Mitrovica, J. X., Dutton, A., Hoffman, J. S., et al. (2020). Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature, 577(7792), 660–+.
Abstract: Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences(1-3) despite both periods undergoing similar changes in global mean temperature(4,5) and forcing from greenhouse gases(6). Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation(7), understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging(2). Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves(8). This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss(9-12) analogous to ongoing changes in the Antarctic(13,14) and Greenland(15) ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales(16), with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin(9,12,17). Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.
|
Gintert, B. E., Precht, W. F., Fura, R., Rogers, K., Rice, M., Precht, L. L., et al. (2019). Regional coral disease outbreak overwhelms impacts from a local dredge project. Environ Monit Assess, 191(10).
Abstract: A repeated-measures coral monitoring program established as part of the PortMiami expansion program provided an unparalleled opportunity to quantify the levels of coral mortality that resulted from both local dredging stress and as a result of climate-related bleaching stress and the subsequent outbreak of a white-plague-like disease (WPD) epizootic. By comparing measured rates of coral mortality at 30 sites throughout Miami-Dade County to predicted mortality levels from three different coral mortality scenarios, we were able to evaluate the most likely source of coral mortality at both the local and regional levels during the 2014-2016 coral bleaching and WPD event. These include scenarios that assume (1) local dredging increases coral disease mortality, (2) regional climate-related stress is the proximal driver of coral disease mortality, and (3) local and regional stressors are both responsible for coral disease mortality. Our results show that species-specific susceptibility to disease is the determining factor in 93.3% of coral mortality evaluated throughout Miami-Dade County, whereas local dredging stress only accurately predicted coral mortality levels 6.7% of the time. None of the monitoring locations adjacent to the PortMiami expansion had levels of coral mortality that exceeded predictions when coral community composition was taken into account. The novel result of this analysis is that climate-mediated coral disease mortality was more than an order of magnitude (14x) more deadly than even the largest marine construction project performed in the USA, and that until climate change is addressed, it is likely that local attempts to manage coral resilience will continue to fail.
|
Klaus, J. S., Meeder, J. F., McNeill, D. F., Woodhead, J. F., & Swart, P. K. (2017). Expanded Florida reef development during the mid-Pliocene warm period. Global and Planetary Change, 152, 27–37.
|
Koch, M. S., Coronado, C., Miller, M. W., Rudnick, D. T., Stabenau, E., Halley, R. B., et al. (2015). Climate change projected effects on coastal foundation communities of the greater Everglades using a 2060 scenario: need for a new management paradigm. Environmental Management, 55(4), 857–875.
Abstract: Rising sea levels and temperature will be dominant drivers of coastal Everglades� foundation communities (i.e., mangrove forests, seagrass/macroalgae, and coral reefs) by 2060 based on a climate change scenario of +1.5 °C temperature, +1.5 foot (46 cm) in sea level, ±10 % in precipitation and 490 ppm CO2. Current mangrove forest soil elevation change in South Florida ranges from 0.9 to 2.5 mm year−1 and would have to increase twofold to fourfold in order to accommodate a 2060 sea level rise rate. No evidence is available to indicate that coastal mangroves from South Florida and the wider Caribbean can keep pace with a rapid rate of sea level rise. Thus, particles and nutrients from destabilized coastlines could be mobilized and impact benthic habitats of southern Florida. Uncertainties in regional geomorphology and coastal current changes under higher sea levels make this prediction tentative without further research. The 2060 higher temperature scenario would compromise Florida�s coral reefs that are already degraded. We suggest that a new paradigm is needed for resource management under climate change that manages coastlines for resilience to marine transgression and promotes active ecosystem management. In the case of the Everglades, greater freshwater flows could maximize mangrove peat accumulation, stabilize coastlines, and limit saltwater intrusion, while specific coral species may require propagation. Further, we suggest that regional climate drivers and oceanographic processes be incorporated into Everglades and South Florida management plans, as they are likely to impact coastal ecosystems, interior freshwater wetlands and urban coastlines over the next few decades.
|
Lester, S. E., Rassweiler, A., McCoy, S. J., Dubel, A. K., Donovan, M. K., Miller, M. W., et al. (2020). Caribbean reefs of the Anthropocene: Variance in ecosystem metrics indicates bright spots on coral depauperate reefs. Glob Chang Biol, 26, 4785–4799.
Abstract: Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes-and often presume a universal decline of ecosystem services with coral loss-rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous "bright spots," where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low-coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.
|
Mayfield, A. B., Mayfield AB, Tsai, S., Tsai S, Lin, C., & Lin C. (2019). The Coral Hospital. Biopreserv Biobank, .
Abstract: Herein we propose an ambitious confrontation of the current coral reef crisis through the establishment of a "Coral Hospital." In an analogous manner to a human hospital, "sick" corals will first be diagnosed either in situ or in the hospital's diagnostic "clinic" such that the root cause of illness can be discerned (e.g., disease, high temperatures, or pollutant stress). Then, corals will be "treated" (when necessary) and allowed to "convalesce" in precisely controlled coral husbandry facilities. Upon "rehabilitation," the recovered corals will be returned to their home reef (if this reef was not found to have degraded), or, alternatively, to a site featuring oceanographic conditions favoring a high level of health, as determined by husbandry experiments performed in other hospital "wards." When possible, diagnostic data from the sick corals (i.e., the underlying cause of sickness) will be used to guide environmental remediation schemes aimed at promoting coral resilience in the ocean. If the home reef improves to an appreciable extent during the time the corals are "hospitalized," these corals could be replanted there upon rehabilitation. Regardless of the site of outplanting, recuperated corals will be monitored over time to validate the "quality of care" in the hospital. In the event that the home reefs suffer to such an extent that environmental mitigation is no longer possible, coral gametes will be collected and cryopreserved such that they may be fertilized, reared in officinarum, and later reseeded once/if global marine conditions again permit coral survival.
|
Maynard, J. A., McKagan, S., Raymundo, L., Johnson, S., Ahmadia, G. N., Johnston, L., et al. (2015). Assessing relative resilience potential of coral reefs to inform management. Biological Conservation, 192, 109–119.
Abstract: Ecological resilience assessments are an important part of resilience-based management (REM) and can help prioritize and target management actions. Use of such assessments has been limited due to a lack of clear guidance on the assessment process. This study builds on the latest scientific advances in REM to provide that guidance from a resilience assessment undertaken in the Commonwealth of the Northern Mariana Islands (CNMI). We assessed spatial variation in ecological resilience potential at 78 forereef sites near the populated islands of the CNMI: Saipan, Tinian/Aguijan, and Rota. The assessments are based on measuring indicators of resilience processes and are combined with information on anthropogenic stress and larval connectivity. We find great spatial variation in relative resilience potential with many high resilience sites near Saipan (5 of 7) and low resilience sites near Rota (7 of 9). Criteria were developed to identify priority sites for six types of management actions (e.g., conservation, land-based sources of pollution reduction, and fishery management and enforcement) and 51 of the 78 sites met at least one of the sets of criteria. The connectivity simulations developed indicate that Tinian and Aguijan are each roughly 10 x the larvae source that Rota is and twice as frequent a destination. These results may explain the lower relative resilience potential of Rota reefs and indicates that actions in Saipan and Tinian/Aguijan will be important to maintaining supply of larvae. The process we describe for undertaking resilience assessments can be tailored for use in coral reef areas globally and applied to other ecosystems.
|
McCarthy, M. J., Colna, K. E., El-Mezayen, M. M., Laureano-Rosario, A. E., Méndez-Lázaro, P., Otis, D. B., et al. (2017). Satellite Remote Sensing for Coastal Management: A Review of Successful Applications. Environmental Management, 60(2), 323–339.
|
Mumby, P. J., Sanchirico, J. N., Broad, K., Beck, M. W., Tyedmers, P., Morikawa, M., et al. (2017). Avoiding a crisis of motivation for ocean management under global environmental change. Glob Change Biol, 23(11), 4483–4496.
|
Okazaki, R. R., Towle, E. K., van Hooidonk, R., Mor, C., Winter, R. N., Piggot, A. M., et al. (2017). Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Glob Change Biol, 23(3), 1023–1035.
Abstract: Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2) (400, 900, 1300 μatm). Mixed-effects models of calcification for each species were then used to project community-level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business-as-usual CO2 emissions scenario, reefs with high abundances of these species had projected end-of-century declines in scleractinian calcification of >50% relative to present-day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end-of-century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10�100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.
|
Perry, C., Kench, P., Smithers, S., Riegl, B., Gulliver, P., & Daniells, J. (2017). Terrigenous sediment-dominated reef platform infilling: an unexpected precursor to reef island formation and a test of the reef platform size-island age model in the Pacific. Coral Reefs, 36(3), 1013–1021.
|
Perry, C. T., Alvarez-Filip, L., Graham, N. A. J., Mumby, P. J., Wilson, S. K., Kench, P. S., et al. (2018). Loss of coral reef growth capacity to track future increases in sea level. Nature, 558(7710), 396–400.
Abstract: Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.
|
Precht, W. F., & Aronson, R. B. (2016). Stability of Reef-Coral Assemblages in the Quaternary. In Coral Reefs at the Crossroads (Vol. 6, pp. 155–173). Springer.
|
Stathakopoulos, A., Riegl, B. M., & Toth, L. T. (2020). A revised Holocene coral sea-level database from the Florida reef tract, USA. PeerJ, 8, e8350.
Abstract: The coral reefs and mangrove habitats of the south Florida region have long been used in sea-level studies for the western Atlantic because of their broad geographic extent and composition of sea-level tracking biota. The data from this region have been used to support several very different Holocene sea-level reconstructions (SLRs) over the years. However, many of these SLRs did not incorporate all available coral-based data, in part because detailed characterizations necessary for inclusion into sea-level databases were lacking. Here, we present an updated database comprised of 303 coral samples from published sources that we extensively characterized for the first time. The data were carefully screened by evaluating and ranking the visual taphonomic characteristics of every dated sample within the database, which resulted in the identification of 134 high-quality coral samples for consideration as suitable sea-level indicators. We show that our database largely agrees with the most recent SLR for south Florida over the last approximately 7,000 years; however, the early Holocene remains poorly characterized because there are few high-quality data spanning this period. Suggestions to refine future Holocene SLRs in the region are provided including filling spatial and temporal data gaps of coral samples, particularly from the early Holocene, as well as constructing a more robust peat database to better constrain sea-level variability during the middle to late Holocene. Our database and taphonomic-ranking protocol provide a framework for researchers to evaluate data-selection criteria depending on the robustness of their sea-level models.
|
van Hooidonk, R., Maynard, J. A., Liu, Y., & Lee, S. - K. (2015). Downscaled projections of Caribbean coral bleaching that can inform conservation planning. Glob Change Biol, .
Abstract: Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase-5 models and via dynamical and statistical downscaling. A high-resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4-km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040�2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations.
|
van Woesik, R., & Cacciapaglia, C. W. (2020). Carbonate production of Micronesian reefs suppressed by thermal anomalies and Acanthaster as sea-level rises. PLoS One, 14(11), e0224887.
Abstract: Coral reefs are essential to millions of island inhabitants. Yet, coral reefs are threatened by thermal anomalies associated with climate change and by local disturbances that include land-use change, pollution, and the coral-eating sea star Acanthaster solaris. In combination, these disturbances cause coral mortality that reduce the capacity of reefs to produce enough carbonate to keep up with sea-level rise. This study compared the reef-building capacity of shallow-water inner, patch, and outer reefs in the two islands of Pohnpei and Kosrae, Federated States of Micronesia. We identified which reefs were likely to keep up with sea-level rise under different climate-change scenarios, and estimated whether there were differences across habitats in the threshold of percentage coral cover at which net carbonate production becomes negative. We also quantified the influence of A. solaris on carbonate production. Whereas the northwestern outer reefs of Pohnpei and Kosrae had the highest net rates of carbonate production (18.5 and 16.4 kg CaCO3 m-2 yr-1, respectively), the southeastern outer reefs had the lowest rates of carbonate production (1.2-1.3 and 0.7 kg CaCO3 m-2 yr-1, respectively). The patch reefs of Pohnpei had on average higher net carbonate production rates (9.5 kg CaCO3 m-2 yr-1) than the inner reefs of both Pohnpei and Kosrae (7.0 and 7.8 kg CaCO3 m-2 yr-1, respectively). A. solaris were common on Kosrae and caused an average reduction in carbonate production of 0.6 kg CaCO3 m-2 yr-1 on Kosraean reefs. Northern outer reefs are the most likely habitats to keep up with sea-level rise in both Pohnpei and Kosrae. Overall, the inner reefs of Pohnpei and Kosrae need ~ 5.5% more coral cover to generate the same amount of carbonate as outer reefs. Therefore, inner reefs need special protection from land-use change and local pollution to keep pace with sea-level rise under all climate-change scenarios.
|
Weinstein, D. K., Klaus, J. S., & Smith, T. B. (2015). Habitat heterogeneity reflected in mesophotic reef sediments. Sedimentary Geology, 329, 177–187.
Abstract: Modern reef sediments reflect the physical and chemical characteristics of the environment as well as the local reef fauna. Analysis of sedimentary reef fades can thus provide a powerful tool in interpreting ancient reef deposits. However, few studies have attempted to differentiate sedimentary facies in mesophotic coral ecosystems, low light habitats defined as residing 30-150 m below sea level. The low-angle shelf mesophotic coral ecosystem south of the northern U.S. Virgin Islands (USVI) consists of reefs with different structural characteristics ideal for studying the relationship between habitat variability and sedimentary facies. Textural, compositional, and geochemical analyses of surface sediments were used to identify mesophotic reef subfacies associated with distinct benthic communities and structural habitats. Sediment grain composition and bulk geochemistry were found to broadly record the distribution and abundance of coral and macroalgae communities, foundational mesophotic reef benthic organisms. Overall, sediment composition was found to be a good indicator of specific reef environments in low-angle mesophotic reef habitats. Sedimentological analyses indicate that hydrodynamic forces do not transport a significant amount of allochthonous sediment or potentially harmful terrigenous material to USVI mesophotic reefs. Episodic, maximum current velocities prevented deposition of most silt-size grains and smaller, but biological processes were found to have a greater influence on subfacies partitioning than hydrodynamic processes. Results provide a new analog for studies of ancient mesophotic coral ecosystem geological history and document the relationship between mesophotic reef subfacies, structural complexity, and habitat heterogeneity. They also demonstrate how mesophotic reefs along the same shelf system do not always share similar sedimentary characteristics and thus record a diverse set of ecological and environmental conditions.
|