Pfister, C. A., Roy, K., Wootton, J. T., McCoy, S. J., Paine, R. T., Suchanek, T. H., et al. (2016). Historical baselines and the future of shell calcification for a foundation species in a changing ocean. Proc. R. Soc. B, 283(1832), 20160392.
Abstract: Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s-1970s and shells from two Native American midden sites (similar to 1000-2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10-40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds.
|
Sato, K. N., Powell, J., Rudie, D., & Levin, L. A. (2018). Evaluating the promise and pitfalls of a potential climate change-tolerant sea urchin fishery in southern California. ICES J Mar Sci, 75(3), 1029–1041.
Abstract: Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200-300-m depth range. Here we outline potential criteria for a climate change-tolerant fishery by examining the distribution, life-history attributes, and marketable qualities of S. fragilis in southern California. We provide evidence of seasonality of gonad production and demonstrate that peak gonad production occurs in the winter season. S. fragilis likely spawns in the spring season as evidenced by consistent minimum gonad indices in the spring/summer seasons across 4 years of sampling (2012-2016). The resiliency of S. fragilis to predicted future increases in acidity and decreases in oxygen was supported by high species abundance, albeit reduced relative growth rate estimates at water depths (485-510 m) subject to low oxygen (11.7-16.9 micromol kg(-1)) and pHTotal (<7.44), which may provide assurances to stakeholders and managers regarding the suitability of this species for commercial exploitation. Some food quality properties of the S. fragilis roe (e.g. colour, texture) were comparable with those of the commercially exploited shallow-water red sea urchin (Mesocentrotus franciscanus), while other qualities (e.g. 80% reduced gonad size by weight) limit the potential future marketability of S. fragilis. This case study highlights the potential future challenges and drawbacks of climate-tolerant fishery development in an attempt to inform future urchin fishery stakeholders.
|