Home | << 1 >> |
![]() |
Claar, D. C., Claar DC, Starko, S., Starko S, Tietjen, K. L., Tietjen KL, et al. (2020). Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. (Vol. 11).
Abstract: Prospects for coral persistence through increasingly frequent and extended heatwaves seem bleak. Coral recovery from bleaching is only known to occur after temperatures return to normal, and mitigation of local stressors does not appear to augment coral survival. Capitalizing on a natural experiment in the equatorial Pacific, we track individual coral colonies at sites spanning a gradient of local anthropogenic disturbance through a tropical heatwave of unprecedented duration. Unexpectedly, some corals survived the event by recovering from bleaching while still at elevated temperatures. These corals initially had heat-sensitive algal symbiont communities, endured bleaching, and then recovered through proliferation of heat-tolerant symbionts. This pathway to survival only occurred in the absence of strong local stressors. In contrast, corals in highly disturbed areas were already dominated by heat-tolerant symbionts, and despite initially resisting bleaching, these corals had no survival advantage in one species and 3.3 times lower survival in the other. These unanticipated connections between disturbance, coral symbioses and heat stress resilience reveal multiple pathways to coral survival through future prolonged heatwaves.
|
Clark, P. U., He, F., Golledge, N. R., Mitrovica, J. X., Dutton, A., Hoffman, J. S., et al. (2020). Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature, 577(7792), 660–+.
Abstract: Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences(1-3) despite both periods undergoing similar changes in global mean temperature(4,5) and forcing from greenhouse gases(6). Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation(7), understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging(2). Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves(8). This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss(9-12) analogous to ongoing changes in the Antarctic(13,14) and Greenland(15) ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales(16), with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin(9,12,17). Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.
|
Johnston, N. K., Johnston NK, Campbell, J. E., Campbell JE, Paul, V. J., Paul VJ, et al. (2020). Effects of future climate on coral-coral competition. (Vol. 15).
Abstract: As carbon dioxide (CO2) levels increase, coral reefs and other marine systems will be affected by the joint stressors of ocean acidification (OA) and warming. The effects of these two stressors on coral physiology are relatively well studied, but their impact on biotic interactions between corals are poorly understood. While coral-coral interactions are less common on modern reefs, it is important to document the nature of these interactions to better inform restoration strategies in the face of climate change. Using a mesocosm study, we evaluated whether the combined effects of ocean acidification and warming alter the competitive interactions between the common coral Porites astreoides and two other mounding corals (Montastraea cavernosa or Orbicella faveolata) common in the Caribbean. After 7 days of direct contact, P. astreoides suppressed the photosynthetic potential of M. cavernosa by 100% in areas of contact under both present (~28.5 degrees C and ~400 muatm pCO2) and predicted future (~30.0 degrees C and ~1000 muatm pCO2) conditions. In contrast, under present conditions M. cavernosa reduced the photosynthetic potential of P. astreoides by only 38% in areas of contact, while under future conditions reduction was 100%. A similar pattern occurred between P. astreoides and O. faveolata at day 7 post contact, but by day 14, each coral had reduced the photosynthetic potential of the other by 100% at the point of contact, and O. faveolata was generating larger lesions on P. astreoides than the reverse. In the absence of competition, OA and warming did not affect the photosynthetic potential of any coral. These results suggest that OA and warming can alter the severity of initial coral-coral interactions, with potential cascading effects due to corals serving as foundation species on coral reefs.
|
Pisapia, C., Pisapia C, Edmunds, P. J., Edmunds PJ, Moeller, H. V., Moeller HV, et al. (2020). Projected shifts in coral size structure in the Anthropocene. Adv Mar Biol, 87(1), 31–60.
Abstract: Changes in the size structure of coral populations have major consequences for population dynamics and community function, yet many coral reef monitoring projects do not record this critical feature. Consequently, our understanding of current and future trajectories in coral size structure, and the demographic processes underlying these changes, is still emerging. Here, we provide a conceptual summary of the benefits to be gained from more comprehensive attention to the size of coral colonies in reef monitoring projects, and we support our argument through the use of case-history examples and a simplified ecological model. We neither seek to review the available empirical data, or to rigorously explore causes and implications of changes in coral size, we seek to reveal the advantages to modifying ongoing programs to embrace the information inherent in changing coral colony size. Within this framework, we evaluate and forecast the mechanics and implications of changes in the population structure of corals that are transitioning from high to low abundance, and from large to small colonies, sometimes without striking effects on planar coral cover. Using two coral reef locations that have been sampled for coral size, we use demographic data to underscore the limitations of coral cover in understanding the causes and consequences of long-term declining coral size, and abundance. A stage-structured matrix model is used to evaluate the demographic causes of declining coral colony size and abundance, particularly with respect to the risks of extinction. The model revealed differential effects of mortality, growth and fecundity on coral size distributions. It also suggested that colony rarity and declining colony size in association with partial tissue mortality and chronic declines in fecundity, can lead to a demographic bottleneck with the potential to prolong the existence of coral populations when they are characterized by mostly very small colonies. Such bottlenecks could have ecological importance if they can delay extinction and provide time for human intervention to alleviate the environmental degradation driving reductions in coral abundance.
|
Precht WF, Aronson, R. B., Gardner, T. A., Gill, J. A., Hawkins, J. P., Hernandez-Delgado, E. A., et al. (2020). The timing and causality of ecological shifts on Caribbean reefs. Adv Mar Biol, 87(1), 331–360.
Abstract: Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Keywords: Animals; *Anthozoa; Caribbean Region; Climate Change; *Coral Reefs; Ecosystem; Seaweed; Bleaching; Coral reefs; Disease; Macroalgae; Mortality; Phase shift
|
Riegl, B. M., Riegl BM, Glynn, P. W., & Glynn PW. (2020). Population dynamics of the reef crisis: Consequences of the growing human population. Adv Mar Biol, 87(1), 1–30.
Abstract: An unequivocal link exists between human population density and environmental degradation, both in the near field (local impacts) and far field (impacts due to teleconnections). Human population is most widely predicted to reach 9-11 billion by 2100, when the demographic transition is expected in all but a handful of countries. Strongest population growth is in the tropics, where coral reefs face dense human population and concomitant heavy usage. In most countries, >50% will be urbanized but growth of rural population and need for food in urban centres will not alleviate pressure on reef resources. Aquaculture will alleviate some fishing pressure, but still utilizes reef surface and is also destructive. Denser coastal populations and greater wealth will lead to reef degradation by coastal construction. Denser populations inland will lead to more runoff and siltation. Effects of human perturbations can be explored with metapopulation theory since they translate to increases in patch-mortality and decreases in patch-colonization (=regeneration). All such changes will result in a habitat with overall fewer settled patches, so fewer live reefs. If rescue effects are included, bifurcations in system dynamics will allow for many empty patches and, depending on system state relative to stable and unstable equilibria, a part-empty system may either trend towards stability at higher patch occupancy or extinction. Thus, unless the disturbance history is known, it may be difficult to assess the direction of system trajectory-making management difficult. If habitat is decreased by destruction, rescue effects become even more important as extinction-debt, accumulated by efficient competitors with weaker dispersal ability, is realized. Easily visible trends in human population dynamics combined with well-established and tested ecological theory give a clear, intuitive, yet quantifiable guide to the severity of survival challenges faced by coral reefs. Management challenges and required actions can be clearly shown and, contrary to frequent claims, no scientific ambiguity exists with regards to the serious threat posed to coral reefs by humankind's continued numerical increase.
|
Copyright © Florida Climate Institute. All rights reserved.