Laureano-Rosario, A. E., Garcia-Rejon, J. E., Gomez-Carro, S., Farfan-Ale, J. A., & Muller-Karger, F. E. (2017). Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature. Acta Tropica, 172, 50–57.
|
Lozano-Fuentes, S., Welsh-Rodriguez, C., Hayden, M. H., Tapia-Santos, B., Ochoa-Martinez, C., Kobylinski, K. C., et al. (2012). Aedes (Ochlerotatus) epactius Along an Elevation and Climate Gradient in Veracruz and Puebla States, Mexico. Jnl. Med. Entom., 49(6), 1244–1253.
Abstract: We report on the collection of immatures of Aedes (Ochlerotatus) epactius Dyar & Knab from artificial containers during July through September 2011 in 12 communities located along an elevation and climate gradient extending from sea level in Veracruz State to high elevations (>2,000 m) in Veracruz and Puebla States, Mexico. Ae. epactius was collected from 11 of the 12 study communities; the lone exception was the highest elevation community along the transect (>2,400 m). This mosquito species was thus encountered at elevations ranging from near sea level in Veracruz City on the Gulf of Mexico to above 2,100 min Puebla City in the central highlands. Collection sites included the city of Cordoba, located at approximate to 850 m, from which some of the first described specimens of Ae. epactius were collected in 1908. Estimates for percentage of premises in each community with Ae. epactius pupae present, and abundance of Ae. epactius pupae on the study premises, suggest that along the transect in central Mexico, the mosquito is present but rare at sea level, most abundant at mid-range elevations from 1,250-1,750 m and then decreases in abundance above 1,800 m. Statistically significant parabolic relationships were found between percentage of premises with Ae. epactius pupae present and average minimum daily temperature, cumulative growing degree-days, and rainfall. We recorded Ae. epactius immatures from a wide range of container types including cement water tanks, barrels/drums, tires, large earthen jars, small discarded containers, buckets, cement water troughs, flower pots, cement water cisterns, and larger discarded containers. There were 45 documented instances of co-occurrence of Ae. epactius and Aedes aegypti (L.) immatures in individual containers.
|
Ryan, S. J., Ryan SJ, Carlson, C. J., Carlson CJ, Tesla, B., Tesla B, et al. (2020). Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob Chang Biol, .
Abstract: In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naive populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.
|
Ryan, S. J., Ryan SJ, Carlson, C. J., Carlson CJ, Tesla, B., Tesla B, et al. (2020). Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob Chang Biol, .
Abstract: In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naive populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.
|
Tesla, B., Demakovsky, L. R., Mordecai, E. A., Ryan, S. J., Bonds, M. H., Ngonghala, C. N., et al. (2018). Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc Biol Sci, 285(1884).
Abstract: Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29 degrees C, and had a thermal range of 22.7 degrees C-34.7 degrees C. Thus, as temperatures move towards the predicted thermal optimum (29 degrees C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5 degrees C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.
|