Florida Climate Institute
Join Us •  E-Newsletter Signup    Follow FCI on Facebook  Follow FCI on Twitter  Follow FCI on LinkedIn
Cross-disciplinary climate research in service of society
  • Home
  • About
    • The Issue
    • Executive Board
    • Staff
  • Events
    • Upcoming Events
      • Florida
      • Other
  • Projects
    • All Projects
    • Ecosystems
      • Agriculture
      • Coastal
      • Terrestrial
    • Natural Resources
      • Climate Sciences
      • Water
      • Energy
      • Land
    • Human Resources
      • Human Dimensions
      • Extension
      • Education
    • Working Groups
  • Resources
    • Data Sets
      • Big Rain Events in SE
      • FISH50
      • Regional Downscaling
      • Seasonal Forecasts
      • Visualization Tool
    • Publications
      • All
      • Journal Articles
      • Reports
      • White Papers
    • Presentations
    • Links
    • Environmental Minute
    • Headline News Archive
    • Newsletters
    • FAQs
  • Opportunities
    • Funding
    • Employment
  • Affiliates
    • List All Affiliates
    • Search By Map
    • Join Us / Register
    • Login
  • Contact

Publications

Home | Show All | Simple Search | Advanced Search | Journal Articles | Reports | White Papers
Login
Quick Search:
...
1-1 of 1 record found matching your query:

toggle visibility
Search within Results:
...
Display Options:

Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print
  Record Links
Author (up) Liu, L.; Wang, X.; Lajeunesse, M.J.; Miao, G.; Piao, S.; Wan, S.; Wu, Y.; Wang, Z.; Yang, S.; Li, P.; Deng, M. url  doi
openurl 
  Title A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes Type Journal Article
  Year 2016 Publication Global Change Biology Abbreviated Journal Glob Change Biol  
  Volume 22 Issue 4 Pages 1394-1405  
  Keywords apparent Q(10); aridity index; drought; meta-analysis; precipitation regime; soil moisture; soil temperature; wet  
  Abstract Soil respiration (R-s) is the second-largest terrestrial carbon (C) flux. Although R-s has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of R-s will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis R-s data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta-analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, R-s,R- and the temperature sensitivity (Q(10)) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by -1.3%. The greatest increases in R-s and Q(10) were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and R-s values decreased by an average of -14% and -17%, respectively, and the soil temperature and Q(10) values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and R-s by -12% and -6%, respectively, but did not alter Q(10). Overall, our synthesis suggests that soil moisture and R-s tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of R-s and Q(10) were predominantly driven by precipitation-induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between R-s and climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number FCI @ refbase @ Serial 968  
Permanent link to this record
Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print

toggle visibility
Save Citations:
Export Records:

Home CQL Search  |  Library Search  |  Show Record  |  Extract Citations Help

logo-fau-2Florida International UniversityFlorida State UniversityUniversity of Central FloridaUniversity of Floridalogo-um-2University of South Florida

The Florida Climate Institute (FCI) is a multi-disciplinary network of national and international research and public organizations, scientists, and individuals concerned with achieving a better understanding of climate variability and change.

Copyright © Florida Climate Institute. All rights reserved.