Florida Climate Institute
Join Us •  E-Newsletter Signup    Follow FCI on Facebook  Follow FCI on Twitter  Follow FCI on LinkedIn
Cross-disciplinary climate research in service of society
  • Home
  • About
    • The Issue
    • Executive Board
    • Staff
  • Events
    • Upcoming Events
      • Florida
      • Other
  • Projects
    • All Projects
    • Ecosystems
      • Agriculture
      • Coastal
      • Terrestrial
    • Natural Resources
      • Climate Sciences
      • Water
      • Energy
      • Land
    • Human Resources
      • Human Dimensions
      • Extension
      • Education
    • Working Groups
  • Resources
    • Data Sets
      • Big Rain Events in SE
      • FISH50
      • Regional Downscaling
      • Seasonal Forecasts
      • Visualization Tool
    • Publications
      • All
      • Journal Articles
      • Reports
      • White Papers
    • Presentations
    • Links
    • Environmental Minute
    • Headline News Archive
    • Newsletters
    • FAQs
  • Opportunities
    • Funding
    • Employment
  • Affiliates
    • List All Affiliates
    • Search By Map
    • Join Us / Register
    • Login
  • Contact

Publications

Home | Show All | Simple Search | Advanced Search | Journal Articles | Reports | White Papers
Login
Quick Search:
...
1-1 of 1 record found matching your query:

toggle visibility
Search within Results:
...
Display Options:

Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print
  Record Links
Author (up) Ghotbi, S.; Wang, D.; Singh, A.; Mayo, T.; Sivapalan, M. url  doi
openurl 
  Title Climate and Landscape Controls of Regional Patterns of Flow Duration Curves Across the Continental United States: Statistical Approach Type Journal Article
  Year 2020 Publication Water Resources Research Abbreviated Journal Water Resour. Res.  
  Volume 56 Issue 11 Pages  
  Keywords flow duration curve; fast flow; slow flow; kappa distribution; copula; mixture distribution  
  Abstract The flow duration curve (FDC) is a hydrologically meaningful representation of the statistical distribution of daily streamflows. The complexity of processes contributing to the FDC introduces challenges for the direct exploration of physical controls on FDC. In this paper, the controls of climate and catchment characteristics on FDC are explored using a stochastic framework that enables construction of the FDC from three components of streamflow: fast and slow flow (during wet days) and slow flow during dry days. The FDC during wet days (FDCw) is computed as the statistical sum of the fast flow duration curve (FFDC) and the slow flow duration curve (SFDCw), considering their dependency. FDC is modeled as the mixture distribution of FDCw and the slow flow duration curve during dry days (SFDCd), by considering the fraction of wet days (&#948;) for perennial streams and both &#948; and the fraction of days of zero streamflow for ephemeral streams. The Kappa distribution is employed to fit the FFDC, SFDCw, and SFDCd for 300 catchments from Model Parameter Estimation Experiment (MOPEX) across the United States. Results show that the 0-20th percentile of FDC is controlled by FFDC and SFDCw, the 90-100th percentile of FDC is controlled by SFDCd, and the 20-90th percentile of FDC is controlled by three components. The relationships between estimated Kappa distribution parameters and climate and catchment characteristics reveal that the aridity index, the coefficient of variation of daily precipitation, timing of precipitation, time interval between storms, snow, topographic slope, and slope of recession slope curve are dominant controlling factors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1397 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number FCI @ refbase @ Serial 2612  
Permanent link to this record
Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print

toggle visibility
Save Citations:
Export Records:

Home CQL Search  |  Library Search  |  Show Record  |  Extract Citations Help

logo-fau-2Florida International UniversityFlorida State UniversityUniversity of Central FloridaUniversity of Floridalogo-um-2University of South Florida

The Florida Climate Institute (FCI) is a multi-disciplinary network of national and international research and public organizations, scientists, and individuals concerned with achieving a better understanding of climate variability and change.

Copyright © Florida Climate Institute. All rights reserved.