|   | 
Details
   web
Records
Author Cammarano, D.; Rötter, R.P.; Asseng, S.; Ewert, F.; Wallach, D.; Martre, P.; Hatfield, J.L.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Kersebaum, K.C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O'Leary, G.J.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J.
Title Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2 Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 198 Issue Pages 80-92
Keywords Multi-model simulation; Transpiration efficiency; Water use; Uncertainty; Sensitivity
Abstract Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (T-eff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50% of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number FCI @ refbase @ Serial 1247
Permanent link to this record
 

 
Author O'Leary, G.J.; Christy, B.; Nuttall, J.; Huth, N.; Cammarano, D.; Stöckle, C.; Basso, B.; Shcherbak, I.; Fitzgerald, G.; Luo, Q.; Farre-Codina, I.; Palta, J.; Asseng, S.
Title Response of wheat growth, grain yield and water use to elevated CO2 under a Free Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment Type Journal Article
Year 2015 Publication Global Change Biology Abbreviated Journal Glob Change Biol
Volume 21 Issue 7 Pages 2670-2686
Keywords climate change; transpiration efficiency; radiation use efficiency; elevated CO2; modelling
Abstract The response of wheat crops to elevated CO2 (eCO2) was measured and modelled with the Australian Grains Free-Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi-arid environment with a seasonal VPD of around 0.5 kPa. Over three years the observed mean biomass at anthesis and grain yield ranged from 4200 to 10200 kg ha−1 and 1600 to 3900 kg ha−1, respectively over various sowing times and irrigation regimes. The mean observed response to daytime eCO2 (from 365 to 550 μmol mol−1 CO2) was relatively consistent for biomass at stem elongation and at anthesis, LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P=0.10) by eCO2, increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM-WHEAT, APSIM-NWHEAT, CAT, CROPSYST, OLEARY-CONNOR and SALUS) in simulating crop responses to eCO2 were similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO2. However, under irrigation the effect of late sowing on response to eCO2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO2, water and temperature are required to resolve these model discrepancies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number FCI @ refbase @ Serial 610
Permanent link to this record