

ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

Impact of Ocean Model Resolution on CCSM4 Simulations

"Peta-Apps"-Team

Ben P. Kirtman, Cecilia Bitz, Frank Bryan, William Collins, John Dennis, Nathan Hearn, James L. Kinter III, Richard Loft, Clem Rousset, Ben Shaw, Leo Siqueira, Cristiana Stan, Robert Tomas and Mariana Vertenstein

Outline

• Motivation:

- Scale Interactions How Do Ocean Eddies Impact the Large Scale Climate?
- Minobe et al. (2008) Nature
- Number of Previous Studies Focused on Atmospheric Resolution
- Recent focus on the Importance of Ocean Eddies
 - Toniazzo et al. (2009); Zheng et al (2009); McWilliams and Colas (2010)
- McClean et al. (2010); Bryan et al. (2010)
 - Order 10-20 Year Simulations

Outline

- CCSM4*
 - Atmosphere: 0.5x0.5
 - Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC*]
 - Initialization: Spun-Up Ocean, Interpolation
- Analysis To Date Largely Focused on Global Climate and Air-Sea Feedback
 - Global Perspective (Global Survey)
 - Regional Highlights: North Atlantic, North Pacific, Tropical Pacific, Tropical Atlantic
 - Coupled Feedback: Does the Coupling Matter???
- Movie, Future Work and Remarks

Affect of Improved Parameterized Physics

- CCSM3.0 vs CCSM3.5
 - Atmosphere: T85; Ocean 1x1

Climatological Equatorial SST

Increasing AGCM Resolution: 2x2 vs 0.5x0.5

Gent et al. 2010

-2

-1

0

3

-6

5

2

3

Δ

6

Increasing OGCM Resolution: Eddy Permitting vs. Resolving

Affect of Resolved Ocean Eddies

- CCSM4
 - Atmosphere: 0.5x0.5
 - Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC]

Annual Mean SST Difference HRC-LRC

AGCM Grid

Annual Mean SST Difference HRC-LRC

-0.75 -0.5 -0.25 0.25 0.5 0.75 1 1.25 1.5 1.75 2

SPEED mean

March Sea Ice Concentrations

HRC

0

September Sea Ice Concentrations

HRC

0

50

March Sea Ice Concentrations

15% Obs

100

September Sea Ice Concentrations

Annual Mean Precipitation HRC-LRC

Annual Mean Precipitation HRC-LRC

Surface Temperature Standard Deviation Ratio HRC/LRC

Surface Temperature Standard Deviation Ratio HRC/LRC

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Surface Temperature Standard Deviation Ratio HRC/LRC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Surface Temperature Standard Deviation Ratio HRC/LRC

17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 31

North Equatorial SSTs

Changes in the 0-5N Annual Cycle

Equatorial SSTs

22 23 24 25 26 27 28 29 30

Equatorial Temperature Sections

Equatorial Pacific Variability Statistics

- Reduced Variance with HRC
- Eastward Shift in Variability
- Affects Global Teleconnections

NINO34-SSTA Point Correlation

0.9

0.5

0,4

0.3

0.2

-0.2

-0,4

-0,5

-0,6

NINO34-SSTA Point Correlation

0.9

0.5

0,4

0.3

0.2

-0,2

-0.3

-0,4

-0,5

-0,6

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Surface Temperature Standard Deviation Ratio HRC/LRC

Sea Surface Height Standard Deviation

HRC SSH

LRC SSH

Local SSTA Co-Variability with ENSO

Local SSTA Co-Variability with ENSO

-0.35 -0.3 -0.25 -0.2 -0.15 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Local SSTA Co-Variability with ENSO

^{-0.65 -0.6 -0.55 -0.45 -0.4 -0.35 -0.25 -0.2 -0.15 -0.1 0.1 0.15 0.2 0.25 0.35 0.4 0.45 0.55 0.6 0.65}

^{-0.65 -0.6 -0.55 -0.45 -0.4 -0.35 -0.25 -0.2 -0.15 -0.1 0.1 0.15 0.2 0.25 0.35 0.4 0.45 0.55 0.6 0.65}

-0.65-0.6-0.55-0.45-0.4-0.35-0.25-0.2-0.15-0.1 0.1 0.15 0.2 0.25 0.35 0.4 0.45 0.55 0.6 0.65

Outline

- CCSM4^{*}
 - Atmosphere: 0.5x0.5
 - Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC*]
 - Initialization: Spun-Up Ocean, Interpolation
- Analysis To Date Largely Focused on Global Climate and Air-Sea Feedback
 - Global Perspective
 - Regional Highlights: North Atlantic, North Pacific, Tropical Pacific
 - Coupled Feedback: Does the Coupling Matter???
- Movie, Future Work and Remarks

Future Work – Mechanism for AMOC

• Motivation:

Concluding Remarks

- Scale Interactions How Do Ocean Eddies Impact the Large Scale Climate?
- Eddies Affect Large Scale Mean Climate
 - Significantly Warmer Climate
 - Noted Differences in North Atlantic SST, Rainfall and Current
 - North Pacific Rainfall Differences Relatively Small
 - Tropical Pacific: Reduced Double ITCZ, Enhanced Monsoon, Modest Changes in Stratification
- Variability and Air-sea Feedbacks
 - Enhanced Variability in the Extra-Tropics
 - Reduced Variability in Tropical Pacific and Indian
 - ENSO Weakens, Shifts Eastward
 - Changes in ENSO-SSTA Teleconnections
 - Much Stronger Coupling Between Heatflux and SST

Interactive Ensemble Approach

Equatorial SSTA Standard Deviation

Contemporaneous Latent Heat Flux - SST Correlati

 $405 \rightarrow 605 \rightarrow 60E \qquad 120E \qquad 180 \qquad 120W \qquad 60W \qquad 60$

CCSM3.0 Control

CCSM3.0 Random Interactive Ensemble

CCSM3.0 Random Interactive Ensemble