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Translating climate science and water
management for implementable solutions

 Climate science research

« Complex and growing practical challenges
faced by our clients and the world at large

* We fill the gap between research and
Implementation for sustainable climate risk
and water management

* Always looking for partners to leverage
and share dynamic solutions for practical
challenges
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Managing climate risk-the ultimate complex
challenge—impacts to the water cycle
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Multiple Impacts create complex water challenges
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Integrated solutions rely on inter-related
approaches and tools

We have developed
Inter-related SIPORT™  SimCLIM
approaches and ”icfii;‘i,;i‘;‘?ﬁfj ey il
tools to create Checteness
integrated solutions (\) (’ ) .
for our most
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an d water ot VOYAGE Mo oo
management
challenges.




SI PORT Modules Support Custom Solutions
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Adaptation and Sustainability:
CLIMsystems and CH2M HILL

p—

ﬁimCLIM
CLIMsystems: customizable, scientifically
defensible, user-friendly software systems for
assessing impacts and adaptations to climate
change

CH2M HILL: globally recognized climate
change risk decision processes, risk
assessment, creating and testing
implementable engineering solutions for
climate resilience.




SImCLIM Input and Output
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How it works:

SimCLIM

SImMCLIM: assesses impacts of climate
change geographically and over time

Efficiently combines GCM output and
GHG scenarios
_ projected temperature and precipitation

_ projected extreme precipitation frequency
and amount,

_ sea level rise
Exports to hydrologic, operations, and
models--directly applicable to local
conditions

Quantifies likelihood of local scale
climate impacts, reliably and FAST!!

Tests potential adaptations




CLIMsystems tools + CH2M HILL Approaches and
Engineering offer Cllmate ReS|I|ent Solutions
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Voyage™: Optimized planning, infrastructure,
and operations for sustainable water solutions

 Interactive, dynamic pEER - NT—
simulation scaleable for built &4 ... VOYAGE Mode! o G pfy
and natural infrastructure “ ” P S
and operations systems
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Project Example:

Preliminary Climate Change Adaptation Costs
for the US Water and Wastewater Sectors

CLIMATE CHANGE: Drinking Water = $325 - $692 billion
An Early Analysis of Water and Wastewater = $123 - $252 billion
Wastewater Adaptation Costs
GRAND TOTAL
- Drinking Water

and Wastewater = $448 - $944 billion

1844 billionh ;
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Project Example:

Integrated, sustainable solutions for the Colorado
River Basin-The CRB Study

 Reclamation and 7 States, Tribes,
NGOs

* Current and Future Gaps
- M&l
— Agriculture
— Energy
— Ecosystems
— Recreation
— Economics

* Projected Climate Change

» Assess risks, develop and test
adaptations

» Create plan for long-term water
sustainability

 Integrated approaches and tools
assess risk, adaptation, and
sustainable water management




Project Example:
Storm Sewer Infrastructure Planning with
Climate Change Risk - A Case Study

The City of Alexandria, Virginia,
has experienced repeated and
Increasingly frequent flooding
events

Reviewed of stormwater design
criteria and potential impacts of
climate change

Used climate change model

projections for 2050 and 2100 to
assess rainfall intensity, duration,
and frequency; and sea level rise

Evaluating infrastructure
adaptation options to reduce
Impacts from sea level rise and
flooding from more intense and
frequent storms
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Bridging the Gap between Climate Science and Water Management Needs

Climate science
e Global climate models
e Scenarios of change
e Bio-physical impact
assessment
e.g. IPCC assessment

Vulnerability and resilience
e Adaptation
e Sustainable development
e Risk-based assessments
e.g. reducing coastal flooding risks

Thank You




