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Introduction 

  An extreme event is most commonly defined in terms of the  
     non-Gaussian tail of the data's probability density function (PDF). 

  Understanding extremes is important because climate and weather 
     risk assessment depends on knowing the tails of PDFs. 

  The general problem of understanding extremes is their scarcity: 
     We have to extrapolate from the well sampled center of a PDF to 

the scarcely or unsampled tails. 

  The extrapolation into the uncharted tails of a PDF can divided into 
three major categories (not mutually exclusive). 



Three Methods to Study Extremes  

  The statistical approach 
 provides methods to extrapolate from the well sampled center to the 
unsampled tails of a PDF using mathematical (asymptotic) arguments.  
 While based on sound mathematics, it does not provide much insight into the 
physics of extreme events. 

  The empirical-physical approach 
  uses physical reasoning based on empirical knowledge to provide a basis for 

the extrapolation into the scarcely sampled tails of the PDF. 
 It lacks the mathematical rigor of the statistical method, but provides valuable 
physical insight into relevant real world problems. 

  The numerical modeling approach  
     aims to estimate the the tails of the PDF by integrating a general circulation 

model (GCM) for a very long period. 
 Here the weakness lies in the largely unknown ability of a model to reproduce 
the correct statistics of extreme events. 



A more General Perspective 
of Extreme Events in Climate 

  The study of extreme climatic events has been largely empirical: 

 Most investigators used observations or model output to estimate  
 the probabilities of extreme events without actually addressing the 
 detailed dynamical/physical reason for the shape of the PDF.  



Measures of Non-Gaussianity: 
Skewness and Kurtosis 

skew ≡
′x
3

σ
 3

 kurt ≡
′x

 4

σ
 4 − 3

Skewness and kurtosis are non-dimensional measures 
describing the shape of a probability density function (PDF)  

For data drawn from any PDF we have (Pearson 1916): 

kurt ≥ skew2 − 2



Observations 
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2
skew2 − r

Skewness-Kurtosis Link 

p(x) ∝ x−α

Power-Law Tails 



Skewness and Kurtosis - SST Anomalies 
Daily AVHRR SSTs blended with in situ data, 1985-2005  

Dataset from Reynolds et al. (2006) 



Skewness and Kurtosis - SST Anomalies 
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PDFs Follow a Power-Law 
in the Gulf Stream System 

p(x) ∝ x−α



Atmospheric  
300 mb Vorticity Anomalies 
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Observed and Simulated Atmospheric 
Power-Law PDFs!

p(x) ∝ x−α
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In a quadratically nonlinear system with “slow” and “fast” components  
x and y, the anomalous nonlinear tendency for the slow component has 

terms of the form  

If we parameterize the fast anomaly y’ as a stochastic white-noise process η, 
we obtain a stochastic differential equation with  

correlated additive and multiplicative (CAM) noise:   

d ′x
dt

= −λeff ′x + (1−φ ′x ) ′F + ′R

In general, the linearized univariate equation can be written:  



Properties of our Model 
  The (excess) kurtosis K is always greater than 1.5 times 

the square of the skewness S minus an off-set r :  

  The PDF p(x) has power-law tails: 

p(x) ∝ x−α

kurt ≥ 3
2
skew2 − r

  The observed skewness-kurtosis link,   
  the observed power-law     

are consistent with our model ! 




