Food Security, Farming, and Climate Change to 2050

Scenarios, Results, Policy Options

Gerald C. Nelson
Senior Research Fellow, IFPRI
Theme Leader, CCAFS

University of Florida
July 15, 2011
Acknowledgements

• The authors
 ◦ Gerald C. Nelson, Mark W. Rosegrant, Amanda Palazzo, Ian Gray, Christina Ingersoll, Richard Robertson, Simla Tokgoz, Tingju Zhu, Timothy Sulser, Claudia Ringler, Siwa Msangi, and Liangzhi You

• Project Foresight: The Future of Food and Farming as catalyst for this effort

• Philip Thornton and Peter Jones for downscaled climate scenarios

• Jawoo Koo for crop modeling assistance

• Several anonymous reviewers
Food Security Challenges are Unprecedented

- Population growth
 - 50 percent more people between 2000 and 2050
 - Almost all in developing countries
- Income growth in developing countries
 - More demand for high valued food (meat, fish, fruits, vegetables)
- Climate change – a threat multiplier
 - Reduced productivity of existing varieties and cropping systems
IFPRI 2009 results on the costs of adaptation

- Unchecked climate change will result in a 20 percent increase in malnourished children in 2050 (25 million more than with perfect mitigation)

- Public-sector agricultural productivity expenditures in developing countries of over $7 billion per year are needed to compensate
 - Public sector research
 - Irrigation
 - Rural roads
New messages for sustainable food security and climate change resilience

• Address poverty and climate change resilience with broad-based income growth
• Invest in specific kinds of agricultural productivity
• Strengthen international trade agreements
Outline

- Climate change basics
- Impacts: crop yields, supply, demand, and trade
- Assessing the food security challenge with and without climate change
- The Global Futures Project
CLIMATE CHANGE BASICS
Average temperatures could increase substantially

Source: Figure 10.4 in Meehl, et al. (2007)
DIFFERENCES IN PRECIPITATION
CHANGES BY GCM ARE LARGE

Watch Sub-Saharan Africa, the Amazon, the U.S. and South Asia
Change in average annual precipitation, 2000-2050, CSIRO GCM, A1B (mm)
Change in average annual precipitation, 2000-2050, MIROC GCM, A1B (mm)
GCM temperature results vary as well
monthly maximum temp change scenarios, MIROC and CSIRO GCMs

2000 2000-2030 change, 2000-2030 change,
CSIRO A1B MIROC A1B

See http://www.ifpri.org/book-775/climate-change/mapindex for animations of different regions
BIOPHYSICAL PRODUCTION RESULTS

Climate-change-only effects on yield and area
Yield Effects, Irrigated Rice, CSIRO A1B (% change 2000 climate to 2050 climate)
Yield Effects, Irrigated Rice, MIROC A1B
(% change 2000 climate to 2050 climate)
Yield Effects, Rainfed Maize, CSIRO A1B (% change 2000 climate to 2050 climate)
Yield Effects, Rainfed Maize, MIROC A1B (% change 2000 climate to 2050 climate)

Legend:
- 2000 old area lost
- loss > 25% of baseline
- loss 5–25%
- change within 5%
- gain 5–25%
- gain > 25%
- 2050 new area gained
- 2050 new area gained
CHARACTERIZING PLAUSIBLE FUTURES
Overall (economic and demographic) scenarios under varying climate futures
Overall scenarios
Plausible futures for population and GDP growth

- Optimistic
 - High GDP and low population growth
- Baseline
 - Medium GDP and medium population growth
- Pessimistic
 - Low GDP and high population growth
Three global and regional GDP per-capita growth scenarios

Global growth rate assumptions, annual average 2010-2050 [%]

<table>
<thead>
<tr>
<th></th>
<th>Pessimistic</th>
<th>Baseline</th>
<th>Optimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>1.04</td>
<td>0.70</td>
<td>0.35</td>
</tr>
<tr>
<td>GDP</td>
<td>1.91</td>
<td>3.21</td>
<td>3.58</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>0.86</td>
<td>2.49</td>
<td>3.22</td>
</tr>
</tbody>
</table>

African GDP per capita growth rate assumptions, annual average 2010-2050 [%]

<table>
<thead>
<tr>
<th></th>
<th>Pessimistic</th>
<th>Baseline</th>
<th>Optimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Africa</td>
<td>2.42</td>
<td>3.92</td>
<td>4.85</td>
</tr>
<tr>
<td>Western Africa</td>
<td>2.04</td>
<td>3.63</td>
<td>4.03</td>
</tr>
<tr>
<td>Eastern Africa</td>
<td>2.72</td>
<td>4.18</td>
<td>4.97</td>
</tr>
<tr>
<td>Northern Africa</td>
<td>1.78</td>
<td>2.60</td>
<td>3.49</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>0.55</td>
<td>2.98</td>
<td>3.44</td>
</tr>
</tbody>
</table>
Five climate scenarios

- Climate scientists “All scenarios have equal probability.”
- Our modeling approach, for each overall scenario, use climate scenarios from…
 - Two GCMs – MIROC (Japanese) and CSIRO (Australian)
 - Two SRES scenarios – A1B and B1
 - Perfect mitigation
Scenario outcomes

- 3 overall scenarios each with 5 climate scenarios
- 15 plausible futures
FOOD SUPPLY AND DEMAND RESULTS

Combining biophysical and socio-economic drivers
Income and population growth drive prices higher
(price increase (%), 2010 – 2050, Baseline economy and demography)
Climate change adds to price increases
(price increase (%), 2010 – 2050, Baseline economy and demography)

Mean effect from four climate scenarios
Climate change scenario effects differ
(price increase (%), 2010 – 2050, Baseline economy and demography)

Minimum and maximum effect from four climate scenarios

- Maize, baseline
- Rice, baseline
- Wheat, baseline
Economy and population scenarios alter price outcomes
(price increase (%), 2010 – 2050, Changing economy and demography)

Rice price increase smallest in optimistic scenario as Asian demand falls with low income and high population growth.

Maize price increase largest in pessimistic scenario as food demand rises with low income and high population growth.
Developed Country, Change in Net Exports of Cereals, 2010-2050 (million mt)

|-------------|------------|----------|-----------|----------|--------------|----------|-----------|----------|--------------|----------|-----------|----------|--------------|

With perfect mitigation, DC net cereal exports change little between 2010 and 2050. DC net cereal exports grow less or decline.
Assessing food security and climate change outcomes

Optimistic scenario

- Developed countries
 - 2010: 3,400 Kcal/day
 - 2035: 3,600 Kcal/day

- All developing countries
 - 2010: 2,800 Kcal/day
 - 2035: 3,000 Kcal/day

- Low-income developing countries
 - 2010: 2,400 Kcal/day
 - 2035: 2,600 Kcal/day

Pessimistic scenario

- Developed countries
 - 2010: 3 K,000 Kcal/day
 - 2035: 2,600 Kcal/day

- All developing countries
 - 2010: 2,400 Kcal/day
 - 2035: 2,100 Kcal/day

- Low-income developing countries
 - 2010: 1,800 Kcal/day
 - 2035: 1,500 Kcal/day

Perfect mitigation

- Developed countries
 - 2010: 3 K,000 Kcal/day
 - 2035: 2,800 Kcal/day

- All developing countries
 - 2010: 2,400 Kcal/day
 - 2035: 2,200 Kcal/day

- Low-income developing countries
 - 2010: 1,800 Kcal/day
 - 2035: 1,600 Kcal/day
Exploring productivity enhancements

- Across-the-board improvement of 40 percent in developing countries
- Commercial (hybrid) maize improvement to 2 percent in selected countries
- Wheat improvement to 2 percent in selected countries
- Cassava improvement to 2 percent in selected countries
- Irrigation efficiency
Productivity improvements reduce poverty

(change in number of malnourished children in 2050, million)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2050 simulation minus 2050 baseline (million)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low-income Developing</td>
</tr>
<tr>
<td>Overall</td>
<td>-6.6</td>
</tr>
<tr>
<td>Commercial maize</td>
<td>-2.1</td>
</tr>
<tr>
<td>Developing country wheat</td>
<td>-0.7</td>
</tr>
<tr>
<td>Developing country cassava</td>
<td>-1.0</td>
</tr>
<tr>
<td>Irrigation</td>
<td>-0.1</td>
</tr>
</tbody>
</table>
Are our results optimistic or pessimistic?

- **Omitted effects**
 - Extreme events/increased availability
 - Sea level rise
 - Melting glaciers

- **Critical assumptions include**
 - Land supply elasticity
 - Yield potential
Conclusions from research monograph

- Sustainable economic growth is a powerful form of climate change adaptation
- Agricultural productivity research output in hands of farmers can reduce poverty and improve climate change resilience
- Open international trade is essential for dealing with uncertainties
- Mitigation is critical
 - Adaptation to 2050 is manageable, but less certain beyond
Why the Global Futures Project

- Sustainable agricultural productivity increases essential
- What are the best investments for limited resources
- Work with
 - Breeders, physiologists, soil scientists, crop modelers and economists
- To identify best technological potential
- ‘Grow’ them in virtual economic space to see what the socioeconomic benefits are
www.ifpri.org/climate-change

Thank you