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This chapter describes both the nature of and anthropogenic mechanisms for climate change, as well as 
how scenarios and projections of future climate change are made. Specific emphasis is placed on 
understanding the changes over the near-term (i.e., adaption timescale) where the emission scenario has 
little impact vs. changes beyond the mid-century where the projections are conditional on the emission 
scenario. The various tools and models used to assess climate change are also summarized, and 
projections from global and regional models are presented. Finally, the new science of decadal prediction 
is presented as it has the potential to improve climate information in the near-term. 

Key Messages 

• The climate science community clearly understand that adaptation decision support needs 
robust regional information, and that the current generation of global models are not sufficient 
in this regard.  

• Efforts to downscale the global models are promising but much remains to be done. 
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Terminology and Definitions 

he language of climate change and climate variability can often be confusing. In this 
section, we introduce terminology applicable to this chapter. The intent here is to clarify 
and simplify the discussion–we make no claim that this terminology list is complete, 

exhaustive, or universally excepted. Much of the discussion follows chapter 11 of the 2013 
Intergovernmental Panel on Climate Change report (i.e., Kirtman et al. 2013). The important 
terms are first introduced in italic font. 

T 
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Internally Generated vs. Externally Forced Climate Variability 

The terms climate change and climate variability are typically used rather loosely. It is, perhaps, 
more well-defined to use the terms externally forced climate variability and internally generated 
climate variability. Externally forced climate variability (in the vernacular of climate change) 
describes how the climate system responds to changes in external forcing whether they be natural 
(e.g., changes in solar output, volcanoes, natural methane from permafrost melt, dust, continental 
drift) or anthropogenic, that is due to human activities (e.g., CO2 concentrations from fossil fuel 
emissions, methane from natural gas production, land use and land cover change). Some 
confusion arises when it is unclear whether the externally forced climate variability is natural or 
anthropogenic. Throughout this chapter, we attempt to be clear about which type of variability 
we are referring to.  

Internally generated climate variability (in the vernacular of climate variability) refers to the 
natural climate variability that would happen if all forcing (natural and anthropogenic) was fixed 
or unchanging. For example, the modes of climate variability discussed in Chapter 17 of this 
book —including the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation 
(PDO), and the Atlantic Multidecadal Oscillation (AMO), among others—would occur without 
changes in the external forcing of the climate system. These modes are natural elements of the 
climate system that typically are due to interactions among the components of the climate 
systems (i.e., land–surface, sea–ice, ocean, and atmosphere). However, even though this 
internally generated climate variability exists without any changes in the external forcing, we 
cannot assume that changes in external forcing will not affect these natural modes. Indeed, the 
effect of increasing CO2 levels on ENSO remains an active area of research, and remains very 
much an open science question.  

Climate Prediction, Projection and Simulation, Scenario 

There is also a distinction between a climate projection and a climate prediction. A climate 
projection is a statement about the future of the climate system that is conditional on the changes 
in the external forcing. For example, one might ask what is the state of the climate system 100 
years from now if we assume CO2 will increase by 1% per year or 2 % per year? The response 
would be very different if the scenario is a 1% vs. 2% per year increase. The science of climate 
projection, therefore, is highly dependent on the specific future scenario for the anthropogenic 
external forcing. In the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change (IPCC), these scenarios are referred to as Representative Pathway Concentrations 
(RCPs) and are typically formulated by economic assumptions since, for example, CO2 emissions 
are well correlated with gross domestic production. 

In contrast, a climate prediction is conditional on the external forcing and the initial condition 
(see Chapter 17 for a more detailed discussion of this). Simply put, a climate prediction attempts 
to capture the evolution of the natural modes of variability and, at the same time, the response to 
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the changes in the external forcing. For the seasonal predictions discussed in Chapter 17, the 
initial condition is of paramount importance and the external forcing is relatively unimportant. 
For longer timescale prediction such as decadal both the initial condition and the evolving 
external forcing are important. When the timescales of interest are even longer (i.e., greater than 
say 20–30 years), then the initial condition is of much smaller importance and the external forcing 
is paramount. At very long timescales (i.e., beyond 30 years), for all practical purposes and 
assuming the same external forcing scenario, climate projection and climate prediction are 
indistinguishable. On the other hand, assuming the same external forcing scenario a ten-year 
prediction and projection may be very different. 

We also need to make the distinction between a climate projection and a climate simulation. 
Much like a climate projection, a climate simulation is a computer model-based depiction of the 
evolution of a climate system conditional on the historical or past-observed external forcing. The 
projection is conditional on the assumed or projected external forcing into the future. Sometimes 
climate simulations are referred to as historical runs or historical simulations. Fig. 18.1, for 
example, shows an ensemble of climate simulations (gray curves). Each ensemble member or 
individual simulation was started with slightly different initial conditions and/or different models 
so that each simulation has different internally generated climate variability. However, all the 
ensemble members have the same externally prescribed forcing, so that the ensemble mean or 
average of all the ensemble members across all models is an estimate of the observed (black 
curve) externally forced climate over the past. The climate simulation can simply transition into 
a projection as the external forcing evolves into an assumed future evolution (various colored 
curves or the RCPs). 

A scenario is a coherent and plausible description of a possible future state of the world. 
Scenarios are not projections or predictions, neither predicting nor forecasting future conditions. 
They differ from forecasts, which impose patterns extrapolated from the past onto the future. 
Since climate scenarios envisage assessment of future developments in complex systems, they 
are often inherently unpredictable, insufficiently assessed, and have high scientific uncertainties. 
The climate scenario differs from climate projection in that it refers to a description of the 
response of the climate system to a scenario of greenhouse gas and aerosol emissions, as 
simulated by a climate model. Climate projections alone rarely provide sufficient information to 
estimate future impacts of climate change because the model outputs commonly have to be 
manipulated and combined with observed climate data to be usable, for example, as inputs to 
impact models. Similarly, a climate scenario and a climate change scenario are also different, as 
the term climate change scenario refers to a representation of the difference of some plausible 
future climate from the current climate or a control climate, adapted from a climate model (IPCC 
2001). A climate change scenario can be viewed as an interim step towards constructing a climate 
scenario because a climate scenario requires combining the climate change scenario with the 
observed current climate. 
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Figure 18.1. Climate simulations and projections of annual mean global mean surface temperature 1986–
2050 (anomalies relative to 1986–2005). Projections under all RCPs from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) models (grey and colored lines, one ensemble member per 
model), with four observational estimates for the period 1986–2012 (black lines). Figure taken from 
Kirtman et al. (2013). 

Near-Term vs. Long-Term Climate 

In part driven by the distinction between climate projection and climate prediction, we also make 
the distinction between near-term climate and long-term climate. Near-term refers to the period 
from the present day to the mid-century and long-term refers to the period from the mid-century 
until 2100 and perhaps beyond. This distinction is useful from at least three specific perspectives. 
First, in the near-term the response to plausible differences in external forcing scenarios are 
relatively small. To be clear, the evolution of external forcing remains very important. We are 
simply acknowledging that any differences between plausible scenarios does not emerge until 
about the mid-century. Essentially, over the next 20–30 years or so, we have already committed 
to a certain amount of climate variability (i.e., warming) due to past anthropogenic external 
forcing. An example of this relative insensitivity to external forcing scenario and the increases 
in the global mean surface air temperature projections are shown in Fig. 18.2. Differences in the 
global mean surface temperature projections do not become significant until about the mid-
century.  
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Figure 18.2. Near-term increase in global mean surface air temperatures (°C) across scenarios. Increases in 
10-year mean (2016–2025, 2026–2035, 2036–2045 and 2046–2055) relative to the reference period (1986–
2005) of the globally-averaged surface air temperatures. Results are shown for the CMIP5 model ensembles 
for RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange), and RCP8.5 (red) and the CMIP3 model 
ensemble (22 models) for SRES A1b (black). The multi-model median (square), 17 to 83% range (wide 
boxes), 5 to 95% range (whiskers) across all models are shown for each decade and scenario. Also shown 
are best estimates for a UNEP scenario (UNEP-ref, grey upward triangles) and one that implements 
technological controls on methane emissions (UNEP CH4, red downward-pointing triangles) (UNEP and 
WMO 2011; Shindell et al. 2012). Both UNEP scenarios are adjusted to reflect the 1986–2005 reference 
period. The right-hand floating axis shows increases in global mean surface air temperature relative to the 
early instrumental period (0.61 °C), defined from the difference between 1850–1900 and 1986–2005 in the 
Hadley Centre/Climate Research Unit gridded surface temperature data set 4 (HadCRUT4) global mean 
temperature analysis. Note that uncertainty remains on how to match the 1986–2005 reference period in 
observations with that in CMIP5 results. Figure from Kirtman et al. (2013). 

 
Second, we want to make the distinction between adaption and mitigation in the context of 

near-term and long-term climate. This distinction is fairly straightforward since adaptation 
focuses on how ecosystems (including human activities) respond to both internally generated and 
externally forced climate variability. Adaptation is defined as ‘adjustment in ecosystem 
management in response to actual or expected climatic stimuli or their effects, which moderates 
harm or exploits beneficial opportunities’ (Anandhi 2017). There are three levels of adaptation, 
depending on the degree of change and the benefits of adaptation: 1) Incremental adaptation 
refers to changes in practices and technologies within an existing system. These are tactical 
choices requiring minimal financial investment, few cropping seasons for the mastery of 
associated managerial skills, and they can be reversed from one cropping season to another. 2) 
Systems adaptation are changes to an existing system, such as new crop types that are mapped 
against an increasing degree of change. 3) Transformational adaptation refers to the more radical 
end of a spectrum of change, such as a change inland use. Adaptations become systemic and then 
transformational in proportion to their irreversibility, capital requirements, life time, and impact 
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(Anandhi 2017). These are discussed in detail in Chapter 8. Adaptation is typically a near-term 
issue since we have already committed to a certain level of warming, and ecosystems will 
necessarily have to respond. Mitigation is about reducing or modifying external anthropogenic 
forcing either through reducing greenhouse gas emissions or through some sort of 
geoengineering solution to enhance to sinks of greenhouse gases (e.g., scrubbing CO2 from the 
atmosphere). This is more of a long-term issue since the changes in external forcing or the 
emergence of a geoengineering solution will mostly affect long-term climate. Third, we noted 
above that decadal climate prediction is at the boundary where both initial condition and external 
forcing are important. Therefore, decadal climate prediction is primarily a near-term climate 
problem that is potentially useful for adaptation, whereas climate projections that reach 2100 are 
more aptly used for mitigation. 

Criteria for Selection of Climate Scenario 

Not all imaginable futures can be viable scenarios of future climate. The suitability of each type 
of scenario for use in policy-relevant impact assessments can be evaluated based on the following 
five criteria (Mearns et al. 2001; Anandhi 2017):  
• Physical plausibility and realism: Changes in climate should be physically plausible, such 

that changes in different climatic variables are mutually consistent and credible. 
• Consistency at regional level with global projections: Scenario changes in regional climate 

may lie outside the range of global mean changes but should be consistent with the theory 
and model-based results. 

• Appropriateness of information for impact assessment: Scenarios should present climate 
changes at an appropriate temporal and spatial scale, for a sufficient number of variables, and 
over an adequate time horizon to facilitate impact assessment. 

• Representativeness of regional climate: Scenarios should represent the potential range of 
future regional climate change. 

• Accessibility: The information required for developing climate scenarios should be readily 
available and easily accessible. 

Types of Scenarios  

Four types of climate scenarios have been adapted in impact assessments (Mearns et al. 2001; 
Anandhi 2007), namely: incremental scenarios, analogue scenarios, a general category of “other 
scenarios,” and scenarios based on the outputs from climate models. The most commonly used 
scenario type is based on outputs from climate models. The other three types have usually been 
applied with reference to or in conjunction with model-based scenarios.  
• Incremental scenarios describe techniques where particular climatic (or related) elements 

are changed incrementally by arbitrary amounts (e.g., +1, +2, +3, +4°C change in 
temperature). These scenarios are also referred to as synthetic scenarios (IPCC 1994), as they 
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do not necessarily present a realistic set of changes that are physically plausible. They are 
usually adapted for exploring system sensitivity prior to the application of more credible, 
model-based scenarios (Anandhi et al. 2016).  

• Analogue scenarios are constructed by identifying recorded climate regimes, which may 
resemble the future climate in a given region. Both spatial and temporal analogues have been 
used in constructing climate scenarios. 
• Spatial analogues are regions which currently have a climate analogous to that 

anticipated in the study region in the future. For example, using a region in Africa as a 
spatial analogue for the potential future climate over South Florida. 
• Temporal analogues make use of climatic information from the past as an analogue 

for possible future climate. They are of two types: palaeoclimatic analogues and 
instrumentally based analogues. Palaeoclimatic analogues are based on reconstruction 
of past climate periods from fossil evidence, such as plant or animal remains and 
sedimentary deposits. Examples of past periods are the mid-Holocene and the Last 
(Eemian) Interglacial. Periods of observed global scale warmth during the historical 
period have also been used as analogues of a greenhouse gas induced warmer world 
(instrumentally based analogues). 

• Scenarios Based on Outputs from Climate Models: Climate models at different spatial 
scales and levels of complexity provide a major source of information for constructing 
scenarios. General circulation models (GCMs), regional climate models (RCMs), and a 
hierarchy of simple models produce information at the global scale. 
• Scenarios from simple climate models: As these models are seldom able to represent 

the non-linearities of some processes that can be captured by more complex models, the 
outputs from these models have been used mostly in conjunction with GCM information 
to develop scenarios using pattern-scaling techniques. 

• Scenarios from GCMs: From the early 1990s, GCM-based scenarios generally refer to 
outputs from coupled Atmosphere-Ocean GCMs (AOGCMs). AOGCM simulations start 
by modeling historical forcing by greenhouse gases and aerosols from the late 19th or 
early 20th century onwards. Climate scenarios based on these simulations are being 
increasingly adopted in impact studies along with scenarios based on ensemble 
simulations and scenarios accounting for multi-decadal natural climatic variability. There 
are several limitations that restrict the usefulness of these outputs for impact assessment: 
(1) their coarse spatial resolution compared to the scale of many impact assessments; (2) 
the difficulty of distinguishing an anthropogenic signal from the noise of inherent internal 
model variability; and (3) the difference in climate sensitivity between various models. In 
spite of these limitations, AOGCMs are widely used for developing climate scenarios for 
quantitative impact assessments. 
• Downscaled scenarios: The difficulty encountered in using the scenarios from GCMs 

has been the mismatch of spatial scales between GCMs and local impact assessments 
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(Anandhi et al. 2011). To overcome this mismatch, scenarios from GCMs at a global 
scale are translated to scenarios at regional or local scale using downscaling 
approaches. Two different downscaling approaches that are currently being pursued 
are dynamic downscaling and statistical downscaling. In the dynamic downscaling 
approach a RCM is embedded into GCM. There are two types of dynamic 
downscaling based on the types of nesting: one way nesting and two way nesting. 
Statistical downscaling involves developing quantitative relationships between large-
scale atmospheric variables (predictors) and local surface variables (predictands). 
There are three types of statistical downscaling, namely weather types, weather 
generators, and transfer functions. 

• Other Types of Scenarios Four additional types of climate scenarios have also been adopted 
in impact studies. 
• The first type involves extrapolating ongoing trends in climate that have been observed 

in some regions and that appear to be consistent with model-based projections of climate 
change. There are obvious dangers in relying on extrapolated trends, because if current 
trends in climate are pointing strongly in one direction, it may be difficult to defend the 
credibility of scenarios that posit a trend in the opposite direction, especially over a short 
projection period. 

• A second type of scenario uses empirical relationship between regional climate and global 
mean temperature from the instrumental record to extrapolate future regional climate on 
the basis of projected global or hemispheric mean temperature change. Again, this method 
relies on the assumption that past relationships between local- and broad-scale climates 
are applicable to the future conditions. 

• A third type of scenario is based on expert judgment, whereby estimates of future climate 
change are solicited from climate scientists. The results are sampled to obtain probability 
density functions of future change. The main criticism of expert judgment is its inherent 
subjectivity, including problems associated with the likely biases in questionnaire design 
and in comprehending information gathered from different scientists.  

• A fourth type of scenario is estimated from indicators. An indicator is defined as any 
variable that represents either the magnitude of an element (e.g., average annual 
precipitation), the variability of an element (e.g., coefficient of variation for annual 
precipitation) or the statistical relationship among elements (Anandhi 2017). Indicators 
are powerful tools to communicate climate change in relatively simple terms by 
portraying the interrelationships among climate and the ecosystems. They help reveal 
information on the impacts of climate change in the ecosystems, which can be useful in 
developing adaptation and mitigation strategies. For example, changes in first fall freeze 
or last spring freeze in Florida are useful in communicating some changes in climate for 
specific stakeholders and policy development. The scenarios developed from changes in 
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freeze are useful in portraying the interrelationships among climate and the citrus or 
strawberry growers for adapting/mitigating to the changes. 

IPCC scenarios  

In 1988, the Intergovernmental Panel on Climate Change (IPCC) was jointly established by the 
World Meteorological Organization (WMO) and the United Nations Environment Programme 
(UNEP) to assess the scientific, technical, and socio-economic information relevant to the 
understanding of climate change, its potential impacts, and options for adaptation and mitigation. 
Since its inception, reports by the IPCC have become the standard works of reference. They are 
widely used by policymakers, scientists, and other experts for assessing the causes of climate 
change, its potential impacts, and evolving response strategies. Further, the emission scenarios 
generated in them are widely used for driving AOGCMs to develop climate change scenarios, 
and the results are freely available for general use. 

In 1992, the IPCC released a set of six global emissions scenarios (IS92a to f), called IS92 
scenarios. These scenarios provide estimates of possible occurrences of greenhouse gases based 
on a wide array of assumptions. Out of the six scenarios, IS92a (also known as the “business as 
usual” scenario) has been widely adopted by the scientific community during the last decade. 
The IS92 scenarios were further updated in 2000 and the new set of emissions scenarios that 
were published in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al. 2000) 
are known as SRES scenarios. These SRES scenarios were constructed in a fundamentally 
different way, with a different range for each projection called a “storyline.” There are four 
storylines (A1, A2, B1, and B2) that describe the way the world population, land use changes, 
new technologies, energy resources, economies, and political structure may evolve over the next 
few decades. Recently, four future scenarios’ representative concentration pathways (RCPs) 
(Van Vuuren et al. 2011) have been used. The freely available, state-of-the-art multi-model 
dataset (multiple GCMs and RCPs) was designed to advance our knowledge of climate variability 
and climate change. 

Near-Term and Long-Term Climate Projections  

This section presents dynamical model-based near-term and long-term climate projections. We 
separate the results into those from the global models reported in the IPCC assessment (Stocker 
et al. 2013), North American Regional Climate Change Assessment Program (NARCCAP; 
Mearns et al. 2012), and the archive of statistically downscaled CMIP3 and CMIP5 Climate and 
Hydrology Projections (DHCP, Brekke et al. 2013). 
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Multi-Model Climate Projections from Global Models 

The figures below (Fig. 18.3 and 18.4) show projections of surface temperature for eastern North 
America using global multi-model climate projections based on RCP4.5. The top panel shows 
an area average time series from 1900-2100 for the eastern third of the North America. The grey 
curves or the historical climate simulations and the colored curves are the results from the climate 
projections using the various RCPs as noted. The bottom rows show maps of the spatial 
distribution of the projected change over eastern North America for the near-term (2016–2035), 
the mid-century (2046–2065) and for the end of the century (2081–2100). The columns indicate, 
for each point on the map, the 25th, 50th, and 75th percentiles for the multi-model ensemble 
distribution. The hatching indicates regions where the differences of percentiles are less than the 
standard deviation of the model-estimated, internally generated present day climate variability. 
Simply put, the hatching indicates where the projections show little change relative to the present 
day. 

Separate seasonal means for December through February (DJF) and June through July are 
shown in Figs 18.3 and 18.4. In terms of temperature, these are the extreme seasons and are often 
of the most interest. Typically, the temperature response is strongest when the background state 
is coldest; that is, in the higher latitudes and in the cold season (DJF). This is primarily because 
the land–atmosphere exchange through a comparatively stable atmospheric boundary layer is 
weaker than in the summer time. Usually in the summer season, the warming of the land surface 
often leads to increased atmospheric eddies allowing for a more robust exchange of heat and 
moisture fluxes between land and atmosphere, which moderates the response of land surface 
temperature to anomalous radiative forcing from increased greenhouse gas emissions. As 
expected, the temperature response is also largest in the long term. Florida is somewhat in 
contrast with the rest of eastern North America in that its largest temperature responses are in 
June through August season.  

The rainfall response is presented in Figs. 18.5 and 18.6. In contrast to temperature, the 
hatched regions are more extensive indicating that the rainfall response does not exceed the 
internally generated climate variability of the present day. The exception to this is in the far 
southeast US, and in Florida in particular, where the enhanced dry season rainfall is relatively 
strong and positive across all timescales. For this emission scenario (RCP4.5), the signal during 
the wet season over Florida is relatively weak, but indicates small increases (<10%) in rainfall. 
The larger or stronger emissions scenario (RCP8.5; not shown) indicates a considerably stronger 
response over Florida in the long term. Interestingly, the multi-model mean in the June-August 
period at the end of the century with RCP8.5 indicates a 20–30% reduction in Florida relative to 
the present day, whereas the September-November period has a 10–20% increase in rainfall. This 
seasonal dependence in the differences and in scenario are particularly challenging for planning 
and responding. 
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Figure 18.3. Time series of temperature change relative to 1986–2005, averaged over land grid points in 
eastern North America (25°N to 50°N, 85°W to 60°W) in December to February. Thin lines denote one 
ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 
25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 
2081–2100 in the four RCP scenarios. (Below) Maps of temperature changes in 2016–2035, 2046–2065 
and 2081–2100 with respect to 1986–2005 in the RCP4.5 scenario. For each point, the 25th, 50th and 75th 
percentiles of the distribution of the CMIP5 ensemble are shown; this includes both natural variability and 
inter-model spread. Hatching denotes areas where the 20-year mean differences of the percentiles are less 
than the standard deviation of model-estimated present-day natural variability of 20-year mean differences. 
Figure from IPCC 2013. 
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Figure 18.4. Time series of temperature change relative to 1986–2005 averaged over land grid points in 
eastern North America (25°N to 50°N, 85°W to 60°W) in June to August. Thin lines denote one ensemble 
member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th 
(median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 
in the four RCP scenarios. (Below) Maps of temperature changes in 2016–2035, 2046–2065 and 2081–
2100 with respect to 1986–2005 in the RCP4.5 scenario. For each point, the 25th, 50th and 75th percentiles 
of the distribution of the CMIP5 ensemble are shown; this includes both natural variability and inter-model 
spread. Hatching denotes areas where the 20-year mean differences of the percentiles are less than the 
standard deviation of model-estimated present-day natural variability of 20-year mean differences. Figure 
from IPCC 2013. 
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Figure 18.5. (Top) Time series of relative change with reference period 1986–2005 in precipitation 
averaged over land grid points in Eastern North America (25°N to 50°N, 85°W to 60°W) in October to 
March. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On 
the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year 
mean changes are given for 2081–2100 in the four RCP scenarios. (Bottom) Maps of precipitation changes 
in 2016–2035, 2046–2065 and 2081–2100 with respect to 1986–2005 in the RCP4.5 scenario. For each 
point, the 25th, 50th and 75th percentiles of the distribution of the CMIP5 ensemble are shown; this includes 
both natural variability and inter-model spread. Hatching denotes areas where the 20-year mean differences 
of the percentiles are less than the standard deviation of model-estimated present day natural variability of 
20-year mean differences. Figure from IPCC 2013. 
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Figure 18.6. (Top) Time series of relative change relative to 1986–2005 in precipitation averaged over land 
grid points in Eastern North America (25°N to 50°N, 85°W to 60°W) in April to September. Thin lines 
denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side 
the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given 
for 2081–2100 in the four RCP scenarios. (Bottom) Maps of precipitation changes in 2016–2035, 2046–
2065 and 2081–2100 with respect to 1986–2005 in the RCP4.5 scenario. For each point, the 25th, 50th and 
75th percentiles of the distribution of the CMIP5 ensemble are shown; this includes both natural variability 
and inter-model spread. Hatching denotes areas where the 20-year mean differences of the percentiles are 
less than the standard deviation of model-estimated present-day natural variability of 20-year mean 
differences. Figure from IPCC 2013. 
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Regional Climate Projections 

The global model results discussed above clearly show relatively little regional spatial resolution. 
This is particularly troublesome for decision makers at the regional level, as many users are 
unable to utilize GCM data that are on a coarse spatial grid (e.g. Obeysekera et al. 2011). There 
are a number of different statistical and dynamical techniques for downscaling the global scale 
models to the regional level (see also Chapter 17, which discusses downscaling of climate 
predictions for regional studies). In brief, dynamical downscaling translates large-scale GCM 
data to a finer grid using a regional climate model (Giorgi et al. 2001, 2009; Bastola and Misra 
2014; among many others), and statistical downscaling uses assumptions of the relationships 
between large-scale fields and local climate (Wood et al. 2004; Maurer et al. 2007; among many 
others). Two popular datasets currently in use are the archive of statistically downscaled CMIP3 
and CMIP5 Climate and Hydrology Projections (DHCP, Brekke et al. 2013) and the World 
Climate Research Programme (WCRP) Coordinated Regional climate Downscaling Experiment 
(CORDEX) (Giorgi et al. 2009), both of which are publically available. For CMIP3, the North 
American regional Climate Change Assessment Program (NARCCAP; Mearns et al. 2012) 
provides dynamically downscaled results. The interested reader is encouraged to visit the 
NARCCAP project (http://www.narccap.ucar.edu). 

Statistical and dynamical downscaling of climate projections has often been used over the 
southeast and Florida. In studying the hydrological system of the Tampa Bay region, Hwang and 
Graham (2014) emphasized the importance of choosing the correct statistical downscaling that 
preserves the precipitation characteristics of the region in order to simulate the streamflow 
variations. Hwang et al. (2011) evaluated the fifth-generation Pennsylvania State University-
National Center for Atmospheric Research Mesoscale Model (MM5) to dynamically downscale 
precipitation over the Tampa Bay region, and found the spatial patterns of precipitation to be 
realistic on daily, seasonal, and inter-annual timescales; they consider the data useful for 
multidecadal water resource planning in Tampa Bay. In another dynamical downscaling effort, 
Stefanova et al. (2012) studied seasonal, sub-seasonal, and diurnal variability of rainfall from the 
Center for Ocean-Atmospheric Prediction Studies (COAPS) Land-Atmosphere Regional 
Reanalysis for the Southeast at 10km resolution (CLARReS10), and found that that the 
downscaled reanalyses agreed with station and gridded observations for seasonal distribution and 
diurnal structure, but total precipitation was overestimated. CMIP3 climate projections were 
downscaled using this methodology, titled the COAPS Land-Atmosphere Regional Ensemble 
Climate Change Experiment for the Southeast United States at 10-km resolution 
(CLARREnCE10). Ning et al. (2011, 2012) use a Self-Organizing Map (SOM) strategy to 
statistically downscale CMIP5 precipitation over the mid-Atlantic region, determining that 
downscaling reduced the inter-GCM uncertainties for this region; the SOM strategy has been 
expanded to include Florida. For temperature, Keellings (2016) assessed the DHCP historical 



5 48  •  B E N  P .  K I R T M A N  E T  A L .  
 
 

simulations and found that the mean and distribution of temperature matched well with 
observations, while extreme maximum daily temperatures were not well simulated. 

Specific to Florida and based on CMIP3, Obeysekera et al. (2015) determined that for 2060, 
reasonable estimates for projected precipitation and temperature changes are +/- 10% and 1.5 
degrees C, respectively. For CMIP5 (using DHCP), Dessalegne et al. (2016) found a wet bias in 
future precipitation, and percent changes in precipitation that range from -2.6 to 20.2% and 
changes in temperature ranging from 0.4 to 3.7 degrees C, depending on the RCP and time-period 
considered. However, Obeysekera et al. (2015) also pointed out the need for more information 
on seasonality of projected changes and extremes.  

Fig. 18.7 shows the mid-century (2041 –2070) summer season (June to August) rainfall 
response to a relatively strong emission scenario from one global model (top) and three different 
regional NARCCAP models (remaining panels). All three of these regional models are forced by 
the particular global model at the regional boundaries of the North American sector. Focusing on 
Florida, it is clear that the projections from the regional models have considerably more spatial 
heterogeneity than the corresponding global model projections. Unfortunately, the regional 
models give remarkably different results on even relatively large scales. These differences are 
easily seen over the state of Florida, where one of the regional models has a reduction in rainfall, 
one is neutral, and one has a sizable increase in rainfall. This is precisely why regional climate 
projection remains a scientific challenge, and projections need to be presented in robust 
probabilistic format; however, we also note that these results are based on climate models 
included in CMIP3. 

A more regional view of the precipitation change, though still on a coarse grid scale, is shown 
in Fig. 18.8 for the southern tier of the US and Caribbean in 2080–2099, with respect to 1986 –
2005 in June to September (left) and December to March (right) for the RCP4.5 scenario with 39 
CMIP5 models. Because Florida’s climate is modulated by many modes of natural variability 
(see Chapter 17), inter-decadal trends can be difficult to interpret, and there can be prolonged dry 
and wet periods related to decadal variability (Christensen et al. 2013; and references therein). 
CMIP5 models project an ensemble mean decrease in precipitation in precipitation over southern 
Florida and an increase in northern Florida in JJAS. In DJFM, there is an increase in precipitation. 
These results are robust over northern Florida (light hatching).  

Though these results are more regionally focused, DHCP data has a spatial resolution more 
relevant to Florida, provided on a 0.125 degree x 0.125 degree grid as opposed to a 1.0 degree 
grid. Fig. 18.9 shows maps of the projected changed change in precipitation for 71 CMIP5 
models and ensemble members. This Figure is intended to be analogous to Fig. 18.8, though it is 
shown as the percent change in precipitation and has not been normalized by the global mean 
surface temperature change as in Fig. 18.8. The downscaled results largely agree with the coarse-
scale CMIP5 results, with decreasing precipitation in southern Florida and increasing 
precipitation in northern Florida in JJAS, and increasing precipitation overall in DJFM. We also 
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note that results are robust across peninsular Florida in DJFM, whereas we only see robustness 
in the northern and extreme southernmost part of the domain in JJAS (stippling).  

 

 

 

 
Figure 18.7. Panels show projections for North American June –August rainfall percent change during the 
mid-century (2041 –2070) based on a relatively high emission scenario for (top) a global model and for 
(remaining) three different regional models that are driving by the global model. Results are from the 
NARCCAP project. 
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Figure 18.8. Maps of precipitation changes for southern North America and the Caribbean in 2080 –2099 
with respect to 1986 –2005 in June through September (JJAS, left) and December through March (DJFM, 
right) in the RCP4.5 scenario with 39 CMIP5 models. Precipitation changes are normalized by the global 
annual mean surface air temperature changes in RCP4.5. Light hatching denotes where more than 66% of 
models have the same sign with the ensemble mean changes, while dense hatching denotes where more 
than 90% of models have the same sign with the ensemble mean change. Figure adapted from IPCC 2013 
(Chapter 14).  

 

 
Figure 18.9. Maps of downscaled precipitation changes for peninsular Florida in 2080–2099 with respect 
to 1986–2005 in June through September (JJAS, left) and December through March (DJFM, right) in the 
RCP4.5 scenario with 71 CMIP5 models and ensemble members, from DHCP data. Precipitation changes 
are given as percent change in JJAS or DJFM from 1986–2005. Stippling denotes where more than 66% of 
models have the same sign with the ensemble mean changes. 
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For regions like Florida, whose terrestrial climate is dependent on the strong but mesoscale 
(of the order of ~10s of km) ocean currents (e.g. the Loop Current system), which transport warm 
waters from the tropics to the subtropical and higher latitude region, it becomes even more 
challenging to simulate or project the regional climate. For example, Misra et al. (2016) showed 
that the global models have significant errors in simulating the Loop Current. More recent 
publications point to conflicting estimates on the observed trends of the strength of the western 
boundary currents (Miller 2017). The readers are referred to Chapter 13 of this book for further 
discussion of the projected climate of the oceans around Florida. 

Indicators as Tools for Developing Scenarios  

Indicators estimated from simulations of global models, downscaled models, or observed climate 
variables can be used to develop scenarios at a local scale (e.g. a farm). Fig. 18.9 shows a decrease 
in precipitation during summer and an increase in precipitation during winter in South Florida. 
These changes can be translated using indicators to communicate technical data in relatively 
simple terms that portray the interrelationships among climate and other physical and biological 
elements of the ecosystem to help reveal evidence of the discernible impacts of climate change. 
For example, decreases in summer precipitation in South Florida is translated to trends (e.g. 
increases in drought, dry spells). Incremental scenarios that can be estimated from these indicator 
trends are +5%, +10%, +15%. These scenarios provide useful information for sustainable water 
resource planning and management in crop production and urban water supply. Similarly, 
increases in winter precipitation values in South Florida can be translated to trends (e.g. increases 
in flooding, wet spells indicators) etc. Incremental scenarios can be estimated from these 
indicator trends (e.g. +5%, +10%, 15%). These scenarios provide useful information for 
stormwater management and wetland management.  

For example, a change in temperature (e.g. 0.5 °C) can translate to change in frost that 
translates to earlier spring and/or later fall seasons. Minimum temperature is the climate variable. 
Examples of indicators estimated from minimum temperature that portray the interrelationships 
among climate and the ecosystem can be frost day, last spring freeze, first fall freeze, and length 
of growing season. A frost day in this case is defined as a day with minimum temperature < 0 
°C. Changes in the indicators are observed in Floridaand can provide important insights on the 
factors, processes, and structures in the ecosystem (e.g. deciding the planting day or variety of 
agricultural crops, the flowering of flora, the changes in the fauna life cycle, water requirement 
of flora and fauna). Changes in the near-term and long-term climate projections and decadal 
climate predictions, when translated to changes in indicators, promote developing adaptation and 
mitigation strategies that can protect and conserve Florida’s unique ecosystems and natural 
resources.  
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Decadal Climate Prediction  

Up to this point, we have only discussed results from projections. Typically, these results are 
shown in such a way as to minimize the internally generated climate variability. This 
minimization is often done by taking multi-year time averages. However, when examining the 
near-term there is a possibility that the internally generated near-term climate could be important 
and perhaps even predictable. Fig. 18.1 is suggestive in this regard. For instance, during the 
period 2005–2012, the projections are largely warmer than the observational estimates. The trace 
from the observational estimates lies in the lower tail of the climate projections. Is this because 
the models produce too much warming for a given level of external forcing (i.e., their so-called 
climate sensitivity is too large)? Alternatively, this could be because the projections make no 
attempt to capture the phasing of the internally generated climate variability. This is where the 
new science of decadal prediction comes in. As noted earlier, decadal predictions are dependent 
on both the initial state and the external forcing, and as such have the potential to predict the 
internally generated climate variability and capture the externally forced response (see Box 11.1 
in Kirtman et al. 2013). Fig. 18.8 which follows a similar format as Fig. 18.1, shows the near-
term projections and some early attempts at decadal predictions (black and red hatched regions). 
The decadal predictions suggest less warming than the projections in better agreement with the 
observational estimates (see Meehl and Tang 2012 and Smith et al. 2012 for details). 

 

 
Figure 18.8. Projections of global mean, annual mean surface air temperature 1986–2050 (anomalies 
relative to 1986–2005), with four observational estimates as shown in Fig. 18.1. The shading illustrates the 
5 to 95% range (grey and blue shades, with the multi-model median in white) of annual mean CMIP5 
projections using one ensemble member per model from RCP4.5 scenario, and annual mean observational 
estimates (solid black line). The maximum and minimum values from CMIP5 are shown by the grey lines. 
Red hatching shows 5 to 95% range for predictions initialized in 2006 for 14 CMIP5 models applying the 
Meehl and Teng (2012) methodology. Black hatching shows the 5 to 95% range for predictions initialized 
in 2011 for eight models from Smith et al. (2013). Figure taken from Kirtman et al. (2013). 
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Since the science of decadal prediction is still relatively immature, it is not ready for regional 
decision support. However, there it holds considerable potential for providing near-term 
probabilistic information that takes both the external forcing and the internally generated 
variability into account (Meehl et al. 2009, 2013). As an example, we show (Fig. 18.9) the five-
year forecast (2016-2020) for surface air temperature from a number of dynamic and statistical 
prediction systems (details in Smith et al. 2013).  

 

 
Figure 18.9. Decadal predictions for 2016 – 2020 from a number of different dynamic and statistical 
prediction systems (see Smith et al. 2013). 
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Final Remarks 

The results described above (and in Chapter 17) clearly demonstrate that the science of regional 
externally forced and internally generated climate variability remains unresolved. Florida’s 
climate, in particular, is especially difficult to project because of its narrow peninsula and the 
complex air – sea interactions associated with the surrounding oceans. Florida also sits at the 
boundaries between the tropics and the extra-tropics, and small shifts in how the global models 
represent the tropics and subtropics have profound impacts over Florida. Indeed, the global 
models have large uncertainties in the boundary between the tropics and extra-tropics, leading to 
large uncertainties in Florida projections from global models. The Fifth Assessment Report of 
the IPCC notes the need for extreme caution when using the global models for regional 
projections (see box 11.2 in Kirtman et al. 2013).  

The climate science community clearly understands that adaption decisions need robust 
regional information, and that the current generation of global models are not sufficient in this 
regard. As such, there are a number of efforts to produce regional climate information using a 
variety of dynamical and statistical methodologies. All of these approaches show promise, but 
the science is relatively immature and robust projections and predictions will ultimately need to 
be tailored to the specific decision support requirements. 

In terms of near-term climate, decadal prediction seems to also hold some promise. Part of 
the reason for this is that decadal predictions can be rigorously verified in terms of both the 
internally generated and externally forced variability, and they can be calibrated for robust 
probabilistic information. Moreover, decadal prediction can be performed at considerably higher 
spatial resolution than is possible with global projections; and there is compelling results 
indicating that this increased resolution will improve the fidelity of the predictions (see Siqueira 
and Kirtman 2016). 
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