Florida Climate Institute
Join Us •  E-Newsletter Signup    Follow FCI on Facebook  Follow FCI on Twitter  Follow FCI on LinkedIn
Cross-disciplinary climate research in service of society
  • Home
  • About
    • The Issue
    • Executive Board
    • Staff
  • Events
    • Upcoming Events
      • Florida
      • Other
  • Projects
    • All Projects
    • Ecosystems
      • Agriculture
      • Coastal
      • Terrestrial
    • Natural Resources
      • Climate Sciences
      • Water
      • Energy
      • Land
    • Human Resources
      • Human Dimensions
      • Extension
      • Education
    • Working Groups
  • Resources
    • Data Sets
      • Big Rain Events in SE
      • FISH50
      • Regional Downscaling
      • Seasonal Forecasts
      • Visualization Tool
    • Publications
      • All
      • Journal Articles
      • Reports
      • White Papers
    • Presentations
    • Links
    • Environmental Minute
    • Headline News Archive
    • Newsletters
    • FAQs
  • Opportunities
    • Funding
    • Employment
  • Affiliates
    • List All Affiliates
    • Search By Map
    • Join Us / Register
    • Login
  • Contact

Publications

Home | Show All | Simple Search | Advanced Search | Journal Articles | Reports | White Papers
Login
Quick Search:
...
1-2 of 2 records found matching your query:

toggle visibility
Search within Results:
...
Display Options:

Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print
Abbott, B. W., Jones, J. B., Schuur, E. A. G., Chapin III, F. S., Bowden, W. B., Bret-Harte, M. S., et al. (2016). Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett., 11(3), 034014.
toggle visibility
Abstract: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
Keywords: permafrost carbon; Arctic; boreal; wildfire; dissolved organic carbon; particulate organic carbon; coastal erosion
Permanent link
 | Save citation:  RTF  PDF  LaTeX
 | Export record:  Atom XML  MODS XML  ODF XML
details   doi
Woodcroft, B. J., Singleton, C. M., Boyd, J. A., Evans, P. N., Emerson, J. B., Zayed, A. A. F., et al. (2018). Genome-centric view of carbon processing in thawing permafrost. Nature, 560(7716), 49–+.
toggle visibility
Abstract: As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.
Keywords: global temperatures; permafrost carbon; Greenhouse gas
Permanent link
 | Save citation:  RTF  PDF  LaTeX
 | Export record:  Atom XML  MODS XML  ODF XML
details   doi
Select All    Deselect All << 1 >>
List View
 | 
Citations
 | 
Details
   print

toggle visibility
Save Citations:
Export Records:

Home CQL Search  |  Library Search  |  Show Record  |  Extract Citations Help

logo-fau-2Florida International UniversityFlorida State UniversityUniversity of Central FloridaUniversity of Floridalogo-um-2University of South Florida

The Florida Climate Institute (FCI) is a multi-disciplinary network of national and international research and public organizations, scientists, and individuals concerned with achieving a better understanding of climate variability and change.

Copyright © Florida Climate Institute. All rights reserved.