Transport of Asian Biomass Burning Emissions to the Arctic-Climatological Considerations

Henry Fuelberg

Department of Meteorology

24 March 2011

The Arctic does not always have pristine air !

Picture courtesy: Ann-Christine Engvall

Mean Position of Arctic Front

Winter/Early Spring

• The Arctic Front, which forms a barrier to transport, extends to lower latitudes.

Pollution sources interior to Arctic front can travel ~ horiz. to the pole

• The barrier can be penetrated by air masses from lower latitudes that undergo surface cooling enroute.

Sources of Pollutants Within the Arctic

Stationary Sources

The major emissions of SO₂ within the Arctic come from industrial activities, primarily non-ferrous metal smelters, in the northern territories of the Russian Federation

Smelter complex at Norilsk Western Siberia

2008-9 Was International Polar Year

- The U.S. sponsored the ARCTAS field project through NASA and NOAA
- Other countries had their own field programs or special research projects

Objectives of ARCTAS

Study the role of long-range poleward transport of aerosols and trace gases to the Arctic

- What is the role of boreal forest fires for aerosols in the Arctic troposphere? What is the impact of pyro-convection on aerosol and trace gas levels in the Arctic stratosphere?
- How does the deposition of soot ("Black Carbon") on snow / ice affect the albedo? What are the effects on radiation transfer in the atmosphere?
- How do the aerosols interact with Arctic clouds?
- What is the role of halogen atom chemistry in the Arctic boundary layer and free troposphere?
- How well do satellite retrievals of the concentrations of various chemical species work in the Arctic environment?

Satellite Coverage

"The A-Train." Listed under each satellite's name is its equator crossing time.

DC-8 21 instruments

P-3 9 Instruments

Satellite Teams Model Forecasting Ozonesonde network with Environment Canada

Our "Stomping Ground"

	DC-8 (185 flight hours)	P-3B (158 flight hours)	B-200 (150 flight hours)
Spring (1-20 April)	9 sorties	8 sorties	27 sorties
California (18-24 July)	4 sorties	1 sortie	
Summer (26 Jun-13 July)	9 sorties	12 Sorties	21 Sorties

Thule, Greenland is not Green during Winter

Prudhoe Bay Area

At the North Pole

During Field Phase Weather Briefings-Flight Planning

I flew on the DC-8 and supported the other two NASA aircraft

Be on the lookout for pollution plumes and weather

Avoiding Lightning

2008 Was Atypical

- An extreme amount of biomass burning over Asia, western Canada, and California
- Due to much warmer, drier conditions
- Biomass burning chemical signature overwhelmed the anthropogenic signal

California—June 29--MODIS

Wildfires in California

Boreal Forest Fires

Southeast Russia—June 30--MODIS

We Sampled Fires in Saskatchewan

FSU Research

Climatological Studies

Detailed Case Studies of Anthropogenic Transport (traditional haze)

Detailed Case Studies of Biomass Emissions

After the Mission Research

Weather Research & Forecasting Model (WRF) Nested grids— 45, 15, 5 km 50 Vertical levels

Trajectories Flexpart runs—Lagrangian particle dispersion model

Where does air enter the Arctic (70 N)

Surface temperature anomaly (°C) for March-April 2008

Satellite-derived Fire Counts

Unusually early April start for Siberian fire season Fires in N. Saskatchewan, California, E. Siberia in June-July

Courtesy of Louisa Emmons-NCAR

10 day back trajectories from DC-8 locations

Particle Dispersion Model

Transport leads to CO Anomalies

Conclusions

- Excessively warm temperatures in Asia during 2008
- Anomalously large fire counts in Asia
- Biomass pollutants transported to Arctic (and elsewhere)
- Similar situation happened in 2010
- Should we expect more of this in the future ?

