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Abstract 13	
  

 We examine the Florida Climate Institute-Florida State University Seasonal 14	
  

Hindcast (FISH50) skill at a relatively high (50km grid) resolution two tiered 15	
  

Atmospheric General Circulation Model (AGCM) for boreal winter and spring seasons at 16	
  

zero and one season lead respectively. The AGCM in FISH50 is forced with bias 17	
  

corrected forecast SST averaged from two dynamical coupled ocean-atmosphere models. 18	
  

 The comparison of the hindcast skills of precipitation and surface temperature 19	
  

from FISH50 with the coupled ocean-atmosphere models reveals that the probabilistic 20	
  

skill is nearly comparable in the two types of forecast systems (with some improvements 21	
  

in FISH50 outside of the global tropics). Furthermore the drop in skill in going from zero 22	
  

lead (boreal winter) to one season lead (boreal spring) is also similar in FISH50 and the 23	
  

coupled ocean-atmosphere models. Both the forecast systems also show that surface 24	
  

temperature hindcasts have more skill than the precipitation hindcasts and that land based 25	
  

precipitation hindcasts have slightly lower skill than the corresponding hindcasts over the 26	
  

ocean. 27	
  

   28	
  

29	
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 29	
  
1. Introduction 30	
  

 The basis for global seasonal climate prediction was initially best illustrated for 31	
  

the boreal winter climate when the El Niño and the Southern Oscillation (ENSO) Sea 32	
  

Surface Temperature (SST) anomalies in the equatorial anomalies are the largest 33	
  

(Bengtsson et al. 1993; Kumar and Hoerling 1995; Shukla 1998; Shukla et al. 2000). 34	
  

These ‘success stories’ spurred the climate modeling community that resulted in 35	
  

significant amount of literature on the impact of slowly varying surface boundary 36	
  

conditions on the genesis, sustenance and demise of several atmospheric climate 37	
  

anomalies (Barnston et al. 1994; Koster et al. 2000; Hoerling et al. 2001; Goddard et al. 38	
  

2001). However these studies highlighted a somewhat arcane and possibly unattainable 39	
  

(in an operational environment) ‘potential’ predictability of the seasonal atmospheric 40	
  

anomalies as they were forced with observed SST. As a result the interest in diagnosing 41	
  

‘potential’ predictability waned in the community, while efforts to develop and diagnose 42	
  

seasonal predictability of coupled ocean-atmosphere models increased (Stockdale et al. 43	
  

1998; Kirtman 2002, 2003; DeWitt et al. 2005). From these sustained efforts in the last 44	
  

decade or so, there has been a notable improvement in the dynamical ENSO prediction 45	
  

(Saha et al. 2006, 2010; Kirtman and Min 2009; Stockdale et al. 2011; Zhu et al. 2012). 46	
  

Saha et al. (2006) demonstrated for the first time that dynamical coupled ocean-47	
  

atmosphere models were comparable if not better than statistical forecasts for ENSO. It 48	
  

has now culminated in a massive nation wide co-ordinated effort to develop the National 49	
  

Multi-Model Ensemble (NMME; http://www.cpc.ncep.noaa.gov/products/ctb/nmme/) 50	
  

project to harvest the improvements made in the individual modeling centers towards 51	
  

improved seasonal prediction. 52	
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 In this paper we seek to revisit the two-tiered seasonal forecast system for 53	
  

seasonal prediction. The motivation for this is several. One, the improvement in the 54	
  

forecasted SST anomalies from the dynamical prediction systems is worth leveraging. 55	
  

Second, coarseness of the coupled ocean-atmosphere models continues to be an issue. In 56	
  

this study we are investigating seasonal predictability with an Atmospheric General 57	
  

Circulation Model (AGCM) of ~50km grid resolution, which is two to four times higher 58	
  

resolution than the current coupled climate models in the NMME. To meet the growing 59	
  

needs of application studies say for example in hydrology, there is a push towards 60	
  

obtaining climate prediction products at a higher spatial and temporal scales (Bohn et al. 61	
  

2010; Clark and Hay 2004; Shukla et al. 2012). Third, there are some recent studies 62	
  

suggesting that improvement of monsoon climate simulations in climate models is a 63	
  

result of the improved ENSO signal  in the model (Delsole and Shukla 2012). Fourth, if 64	
  

the results from this study are promising then it opens the possibility of adding to the 65	
  

NMME effort at a comparatively lower encumbrance with potentially high pay off. Fifth, 66	
  

the basic premise of seasonal climate prediction of slowly varying boundary conditions 67	
  

preconditioning the atmospheric anomalies will always be valid and is worth revisiting 68	
  

periodically to at least assess the progress made in the prediction of the SST anomalies 69	
  

and other boundary conditions. In the next section we explain the experiment design and 70	
  

provide a brief model description. This is followed by the analysis of the results in 71	
  

section 3 followed by summary and conclusions in section 4. 72	
  

 73	
  

2. Experiment Design 74	
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        The Florida Climate Institute-Florida State University Seasonal Hindcasts at 75	
  

50km grid resolution (FISH50) was implemented to initiate forecasts starting in the 76	
  

boreal winter and integrated through 6 months to end of May of the subsequent year. 77	
  

FISH50 was conducted for the period 1982-2008. Further details of the FISH50 78	
  

experiments are provided in Table 1. FISH50 are two tiered hindcasts, meaning that the 79	
  

Atmospheric General Circulation Model (AGCM) was forced with forecasted SST from 80	
  

another prediction system. The forecasted monthly mean SST anomalies were averaged 81	
  

from two coupled ocean-atmosphere models (CFSv2 [Saha et al. 2010]; CCSM3.0 82	
  

[Kirtman and Min 2009]) which are part of the family of the National Multi-Model 83	
  

Ensemble project (NMME; http://www.cpc.ncep.noaa.gov/products/ctb/nmme/). The 84	
  

other coupled ocean-atmosphere models in the NMME project were not utilized as they 85	
  

were not available at the time of conceiving the FISH50 experiments.  The multi-model 86	
  

average of the SST anomalies is found to have overall higher prediction skill than any 87	
  

single model (Kirtman and Min 2009). These multi-model averaged SST anomalies are 88	
  

overlaid on observed climatology that contains the seasonal cycle, secular changes and 89	
  

decadal variations. This bias correction of SST anomalies becomes necessary as the 90	
  

systematic errors in CFSv2 and CCSM3.0 in the equatorial Pacific and in the subtropical 91	
  

eastern oceans are grave (Fig. 1).  For example, CCSM3.0 displays an equatorial central 92	
  

Pacific cold bias of ~1°C in both DJF and MAM seasons. Similarly CFSv2 shows a very 93	
  

large bias (of over 3°C) in the southeastern equatorial Pacific in the MAM season.   94	
  

 Obviously in a two-tiered system as FISH50, we have greater flexibility of 95	
  

correcting these systematic errors. However, unlike other flux correction attempts 96	
  

(Drijfhout and Walsteijn 1998; Kirtman et al. 2002; Kirtman 2003), care was taken to 97	
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exclude the period of forecast (1982-2008) to develop this SST climatology. The 98	
  

importance and difficulty to adhere to this rule of excluding the FISH50 hindcast period 99	
  

to develop the observed SST climatology is highlighted in Fig. 2, which shows the 100	
  

differences in the SST climatology computed in two adjacent 27 year periods of 1955-101	
  

1981 and 1982-2008. In both the seasons of DJF and MAM, the systematic difference 102	
  

between the two periods in the equatorial oceans ranges from about 0.2°C to 0.5°C, 103	
  

which could be regarded as substantial. In other words, we cannot just use the previous 104	
  

27 years of mean SST as the observed climatology for the FISH50 hindcast period. As an 105	
  

alternative we adopted a novel approach following Wu et al. 2009 to compute a time 106	
  

varying climatology that includes the secular change and decadal variations. 107	
  

Mathematically, this may be written as: 108	
  

SSTF = SSTOLF + SSTAMME + SSTACYCLE ---------------------------------------------------- (1) 109	
  

where, SSTF is the forecast SST used to force FISH50 AGCM. SSTOLF is the observed 110	
  

low pass filtered SST. SSTACYCLE is the monthly climatology of ERSSTv3 (Smith et al 111	
  

2008) anomaly from 1901-1981. SSTOLF is updated at the start of each season.  The 112	
  

monthly mean SSTF is interpolated to daily value following Taylor et al. (2000). The 113	
  

methodology to obtain SSTOLF is explained in Appendix I. 114	
  

 The AGCM used in FISH50 essentially follows from the formerly Experimental 115	
  

Climate Prediction Center’s AGCM at Scripps Institute of Oceanography (Kanamitsu et 116	
  

al. 2002b; Shimpo et al. 2008) and now referred as the Florida Climate Institute-Florida 117	
  

State University Global Spectral Model (FGSM). A brief outline of the physics package 118	
  

used in the FGSM is presented in Table 2. It has 28 vertical (terrain following sigma) 119	
  

levels. We have however made some subtle but important changes of increasing the 120	
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resolution to T248 spectral truncation (~50km grid resolution) and replacing the 121	
  

convection scheme from Relaxed Arakawa Schubert (RAS; Moorthi and Suarez 1992) to 122	
  

Kain-Fritsch version 2 (KF2; Kain and Fritsch 1993; Kain 2004) scheme. The motivation 123	
  

for this change can easily be seen in the improvement of the AGCM’s seasonal rainfall 124	
  

climatology for DJF and MAM seasons relative to the original version of the model (Fig. 125	
  

3). For these test integrations displayed in Fig. 3, we ran a single ensemble member for 126	
  

12 seasons (1982 to 1993) using the two different convection schemes at T248 spectral 127	
  

truncation forced with SSTF and compared the mean seasonal rainfall over the 12 128	
  

seasons. In Fig. 3, it is clearly seen that KF2 improves the structure of the ITCZ globally 129	
  

relative to RAS. In the latter, the split ITCZ phenomenon is quite apparent especially in 130	
  

the tropical Indian and Pacific Oceans, which is greatly ameliorated in the KF2 version of 131	
  

the FGSM integrations. However, KF2 has a tendency to rain more relative to the RAS 132	
  

integration and observations. 133	
  

 134	
  

3. Results 135	
  

 Since the seasonal hindcasts are global we will compare and validate the results 136	
  

on a larger scale (globally) and let region specific details for subsequent papers.  We will 137	
  

in this paper hone in on surface air temperature and precipitation forecasts from FISH50, 138	
  

CCSM3.0 and CFSv2 seasonal hindcasts. The details of the validation datasets used in 139	
  

this section are provided in Table 3. 140	
  

 141	
  

 a) SST forcing 142	
  



	
   8	
  

 The bias in the seasonal mean SSTF (from equation 1; Fig. 4) for both DJF and 143	
  

MAM seasons is greatly reduced compared to the SST bias displayed by either CFSv2 or 144	
  

CCSM3.0 (Fig. 1).  The bias in SSTF in Fig. 4 is uniformly in the range -0.5°C to 0.5°C, 145	
  

which is comparably far less than the large errors along the equatorial oceans, subtropical 146	
  

eastern oceans and in the higher latitude storm track regions of both hemispheres in 147	
  

CCSM3.0 and CFSv2 (Fig. 1). Similarly the standard deviation of the mean DJF  SSTF 148	
  

(Fig. 5) shows that the variability along the equatorial Pacific Ocean and the Ecuadorian-149	
  

Peruvian coast is comparable to the other two models. All three show slightly higher 150	
  

variability over the equatorial Pacific in the DJF season, while the mean DJF SST 151	
  

variation in the northern Pacific and in the northern Atlantic is marginally improved in 152	
  

SSTF compared to coupled seasonal hindcasts. In the MAM season, none of the SST 153	
  

forecast products capture the strong variations along the Ecuadorian-Peruvian coast. All 154	
  

of these forecasts contrary to observations exhibit strongest equatorial Pacific SST 155	
  

variations between ~90°W and 160°W. The north Atlantic SST variations in SSTF are 156	
  

slightly improved over the corresponding variations in CFSv2 and CCSM3.0, while over 157	
  

north Pacific it is not so apparent. 158	
  

 159	
  

 b) FISH50 climatology 160	
  

 Fig. 6 shows the observed seasonal climatology of precipitation for DJF and 161	
  

MAM seasons along with the corresponding RMSE for each of the three models. 162	
  

Similarly, Fig. 7 show the zonal mean climatological DJF and MAM seasonal mean 163	
  

precipitation from the observations and the three models. From the two figures it is quite 164	
  

apparent that the RMSE of FISH50 is relatively much higher (as a result of erroneously 165	
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higher precipitation rates) in the tropical latitudes than in either CCSM3.0 and CFSv2 166	
  

hindcasts in both DJF and MAM seasons. In the DJF season, CCSM3.0 displays the least 167	
  

RMSE, while in FISH50 and in CFSv2 the RMSE are especially large over the western 168	
  

Pacific warm pool region, where they tend to rain more than the observations. In FISH50 169	
  

the RMSE is also large over southeastern Africa and southeastern Brazil. In the MAM 170	
  

season the RSME are large in the southern tropics in CCSM3 relative to CFSv2 while 171	
  

still significantly less than that in FISH50. The RMSE in FISH50 in the MAM season 172	
  

continues to be large both over the tropical oceans and over land compared to either 173	
  

CFSv2 and CCSM3.0. The larger tropical RMSE in FISH50 may be highlighting the 174	
  

impact of the absence of the coupled air-sea interactions that could dampen the tropical 175	
  

rainfall activity. 176	
  

 The boreal winter and spring climatology of observed surface temperature and the 177	
  

corresponding RMSE from the three models are shown in Fig. 8. The RMSE over Sahara 178	
  

in northern Africa is rather unique in FISH50. Similarly, the errors in northern Russia and 179	
  

Canada are large in FISH50 compared to that in CCSM3.0 and CFSv2. From Fig. 8 it is 180	
  

seen that except for the semi-arid regions and high altitude region (e.g. Tibetan Plateau) 181	
  

the RMSE in FISH50 is comparatively small. 182	
  

 183	
  

 c) Deterministic predictability 184	
  

 Deterministic predictability in some ways is a fallacy of climate prediction if it is 185	
  

not complimented with probabilistic assessment of skill (Palmer et al. 2000; Kirtman 186	
  

2003). It is argued that both weather and climate prediction are inherently non-187	
  

deterministic because of uncertainty in the initial conditions, imperfect and non-linear 188	
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model that result in chaotic evolution of the climate system. However deterministic skill 189	
  

analysis does provide some (but not complete) insight into the behavior of the forecast 190	
  

system as will be apparent by the conclusion of this paper, when we also compare the 191	
  

models for their probabilistic skill.  192	
  

 In Fig. 9 we show the correlation of the seasonal mean precipitation anomalies (of 193	
  

the ensemble mean) from the three model’s seasonal hindcasts with the corresponding 194	
  

observed precipitation anomalies for both DJF (zero lead) and MAM (one season lead). It 195	
  

is seen that all three models display expectedly strong positive correlations over the 196	
  

equatorial Pacific Ocean in DJF, which get diminished significantly in the subsequent 197	
  

season in MAM. In fact this diminishment of correlation in the equatorial Pacific is least 198	
  

in FISH50 and most in CCSM3.0. In the DJF season, FISH50 also displays a strong 199	
  

positive correlation over southwestern and southeastern United States, eastern Africa, and 200	
  

over northeastern South America, which are some well known regions for ENSO 201	
  

teleconnections (Ropelewski and Halpert 1986, 1987; AchutaRao and Sperber 2006; 202	
  

Breare et al. 2012). In the CFSv2 seasonal hindcasts, the DJF seasonal precipitation 203	
  

anomalies displays similar but somewhat weaker correlations over these continental 204	
  

regions. But in the CCSM3.0 seasonal hindcasts these regions exhibit barely any 205	
  

significant correlations. As noted earlier, the MAM season comparatively shows weaker 206	
  

correlations than in the DJF season in all three models. In case of FISH50, the positive 207	
  

correlations are shifted to northwestern US and northeast Brazil that are well known 208	
  

again for ENSO teleconnections in the boreal spring season (Ropelewski and Halpert 209	
  

1986; Moura and Hastenrath 2004). Similarly CFSv2 display positive correlations, albeit 210	
  

weaker than FISH50 both over these continental regions and in the equatorial Pacific 211	
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region. CCSM3.0 seasonal hindcasts, however continue to display the weakest positive 212	
  

correlations. 213	
  

 The signal to noise ratio following (Straus and Shukla 2000) is a measure of the 214	
  

forced variance from the boundary conditions (e.g. SST anomalies) to the ensemble 215	
  

spread. A signal to noise ratio close to one (zero) would mean that the forecast is 216	
  

confident (highly uncertain). In Fig. 10 all three models display a high ratio over the 217	
  

equatorial Pacific Ocean for precipitation, which is also the region with the positive 218	
  

correlations (Fig. 9) indicating the overwhelming influence of the underlying SST 219	
  

anomalies on the well predicted atmospheric anomalies. FISH50 and CFSv2 also display 220	
  

a relatively high ratio over southwestern and southeastern United States, eastern Africa 221	
  

and northeastern South America, again likely suggesting the prevailing influence of the 222	
  

ENSO teleconnections in the DJF season. CCSM3.0 on the other hand displays higher 223	
  

ratio over the global equatorial oceans including the Atlantic and the Indian Oceans, 224	
  

where they also display higher positive correlation compared to the other two models in 225	
  

the DJF season (Fig. 9). In the MAM season there is significant reduction in the ratio in 226	
  

all three models, suggesting a relatively higher uncertainty in the ensemble mean 227	
  

anomalies of the seasonal hindcasts. A relatively high signal to noise ratio in the absence 228	
  

of strong positive correlations (in Fig. 9) would suggest that the model is erroneously 229	
  

confident of the forecast anomalies except probably over the semi-arid regions where the 230	
  

correlations of rainfall could be very low and yet the model could be rightfully less 231	
  

uncertain of the forecast anomalies. In this case CCSM3.0 in MAM season shows ample 232	
  

evidence of such erroneous confidence over tropical Indian and Atlantic Oceans. 233	
  

Similarly FISH50 in the MAM season shows erroneously high confidence in the 234	
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forecasted precipitation anomalies over the western tropical Atlantic Ocean, while CFSv2 235	
  

exhibits the least discrepancy between the ratio and the positive correlation in Fig. 9. 236	
  

 A similar correlation of seasonal mean surface temperature anomalies from all 237	
  

three models with corresponding observations is shown in Fig. 11. In the DJF season, 238	
  

FISH50 displays a more extensive positive correlation over Africa, Australia, South 239	
  

America, and North America than either CFSv2 and CCSM3.0. It could be argued in the 240	
  

DJF season that CFSv2 exhibits a larger positive correlation than any other model over 241	
  

equatorial Africa and Arabian Peninsula. The corresponding correlations in CCSM3.0 242	
  

display the least extensive and weakest positive correlations over majority of the 243	
  

continental regions. In the MAM season, FISH50 displays a less extensive positive 244	
  

correlation over Africa (with notable reduction over Sahara), reduction of correlation 245	
  

over Australia and less extensive correlations over United States (with notable positive 246	
  

correlations over southwestern and northwestern United States). The corresponding 247	
  

correlations in CFSv2 are nearly comparable to that in FISH50. However in CCSM3.0 248	
  

there is an appearance of negative correlations from the Arabian Peninsula across central 249	
  

Asia. 250	
  

 The signal to noise ratio for seasonal mean surface temperature anomalies (Fig. 251	
  

12) unlike that for precipitation anomalies (Fig. 10) is significantly higher and persistent 252	
  

over both seasons, especially over the oceans. In comparing the ratios in the three 253	
  

models, it is apparent from the figure that FISH50 displays the largest ratios both over 254	
  

land and ocean. However over land, there are more instances of higher signal to noise 255	
  

ratio in areas of weak positive correlations (Fig. 11) in CFSv2 (e.g. over United States, 256	
  

southAsia and Australia. Intriguingly, the signal to noise ratio of the seasonal mean 257	
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surface temperature anomalies is relatively much smaller in CCSM3.0 over most of the 258	
  

land areas. 259	
  

 260	
  

d) Probabilistic prediction skill 261	
  

 Following Mason and Graham (1999, 2002) we compute the Area under the 262	
  

Relative Operating Characteristic Curve (AROC) to assess the probabilistic skill of the 263	
  

seasonal hindcasts. We have analyzed these skills for the lower, middle and upper terciles 264	
  

for both seasonal mean precipitation and surface land temperature for both DJF and 265	
  

MAM seasons. Unlike the deterministic skill that evaluates the ensemble mean 266	
  

anomalies, AROC is a conditional probability metric that provides the forecast 267	
  

probability for events defined by the user (in this case terciles). The thresholds for the 268	
  

terciles were based on the respective model hindcasts and observations separately.  In an 269	
  

operational environment, AROC serves as a useful way to assess a priori an optimal 270	
  

strategy to issue warnings for specific events based on the hindcast performance of the 271	
  

forecast system.  272	
  

 In Fig. 13 we show the AROC for FISH50 seasonal precipitation anomalies in 273	
  

DJF and MAM seasons for lower, middle, and upper terciles. In comparison to Fig. 9 it is 274	
  

immediately apparent that more hindcast skill can be harvested through this approach. In 275	
  

DJF season, FISH50 displays much higher skill than climatology for low and upper 276	
  

tercile events over a vast transect of the global tropics including both land and ocean 277	
  

points. Even higher latitude regions display higher skill than climatology in the first 278	
  

season (DJF) of the FISH50 hindcast, which does not seem to be so obvious from Fig. 9. 279	
  

In the subsequent season of MAM (one season lead) the AROC values diminish in their 280	
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magnitude, but are still sustained (higher than climatology) from the previous season. It is 281	
  

interesting to note that in both seasons, the middle tercile has lesser AROC values than 282	
  

extreme terciles and are also less spatially coherent.  283	
  

 Fig. 14 compares the AROC for seasonal precipitation anomalies over global 284	
  

oceans, global tropical oceans, global land, and global tropical land regions between the 285	
  

three models. The following may be noted from Fig. 14: 286	
  

• All three models over all these four regions show a reduction of AROC from 287	
  

going from DJF to MAM season for all terciles.  288	
  

• All three models display a higher AROC for the extreme terciles than the middle 289	
  

tercile. 290	
  

• All three models display higher skill over the oceans than over land in both 291	
  

seasons and for the extreme tercile events. 292	
  

• Outside of the global tropics, FISH50 has marginally higher AROC than either of 293	
  

the two models for the high tercile events in the DJF and MAM seasons. 294	
  

• For the low tercile events outside of the global tropics, the AROC’s are 295	
  

comparable between FISH50 and CFSv2 with significantly lower values for 296	
  

CCSM3.0. 297	
  

• For extreme terciles in the global tropics for the DJF season CFSv2 seems to have 298	
  

the highest AROC except for high tercile events over the global tropical land 299	
  

where FISH50 displays the highest values. 300	
  

• In the MAM season over global tropical oceans, the AROC values in FISH50 and 301	
  

CFSv2 are comparable while in CCSM3.0 it is significantly less but still above 302	
  

climatology. However over global tropical land regions, all three models display 303	
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comparable AROC values, with notably less skill than climatology for the middle 304	
  

tercile. 305	
  

 Fig. 15 similar to Fig. 13 shows the spatial distribution of the AROC for seasonal 306	
  

mean surface land temperature anomalies from FISH50 for the three terciles. In contrast 307	
  

to Fig. 11, we again see evidence of more probabilistic prediction skill that can be 308	
  

gleaned from FISH50. However, unlike seasonal precipitation anomalies in Fig. 13, the 309	
  

AROC for extreme terciles of surface temperature are higher and more extensive over 310	
  

land especially over Africa, South and North America in both DJF and MAM seasons. 311	
  

Once again we notice that for middle tercile events, the hindcast skill of FISH50 is 312	
  

relatively less than that for the extreme tercile events. Comparing the AROC’s across the 313	
  

three models for surface land temperature for global land and tropical land areas (Fig. 16) 314	
  

we notice that in the DJF season the high skills for the extreme tercile events are 315	
  

comparable between CFSv2 and FISH50 with CCSM3.0 showing slightly less skill. 316	
  

However in the MAM season, CFSv2 shows its superiority over the other two models 317	
  

both over global land and global tropical land areas, while AROC in FISH50 remains 318	
  

higher than CCSM3.0 especially outside of the global tropics. 319	
  

  320	
  

 4.    Summary and conclusions 321	
  

 In part I of this paper we presented the results of the seasonal hindcasts for boreal 322	
  

summer and fall seasons. In this part II of the paper the analysis of seasonal hindcasts for 323	
  

boreal winter and spring seasons are analyzed. At the outset it seems that the two tiered 324	
  

system of FISH50 forced with the bias corrected forecasted SST from single tiered 325	
  

system offers complementary seasonal prediction skill to the coupled ocean-atmosphere 326	
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forecast systems. A systematic comparison of FISH50 winter and spring seasonal 327	
  

hindcasts with corresponding hindcasts from single tiered systems of CFSv2 and 328	
  

CCSM3.0 reveal the following: 329	
  

• The RMSE of precipitation and surface land temperature are higher in FISH50 330	
  

and is least in CCSM3.0. In case of precipitation, the RMSE are larger in the 331	
  

tropical latitudes while for surface land temperature it appears at higher latitudes. 332	
  

• Skillful boreal winter (spring) season rainfall anomalies over southeastern and 333	
  

southwestern United States, northeastern South America and eastern Africa 334	
  

(northwestern United States) appears to be a forced signal as they appear in the 335	
  

deterministic skill analysis. It may be noted that in all these regions FISH50 336	
  

displays the largest skill compared to either CFSv2 and CCSM3.0. 337	
  

• Similarly the correlations of the seasonal surface land temperature anomalies from 338	
  

the seasonal hindcasts and corresponding observations are most extensive over 339	
  

Africa, South and North America in FISH50 relative to the other two models in 340	
  

both boreal winter and spring seasons. 341	
  

• The probabilistic skill analysis reveals that in all three models there is more 342	
  

forecast skill to be gleaned for the extreme tercile events in both seasons (DJF and 343	
  

MAM) and for both variables (precipitation and surface land temperature), while 344	
  

for the middle tercile events CFSv2 and FISH50  (CCSM3.0) are marginally 345	
  

better (worse) than climatology. 346	
  

 The changes made to the convection scheme, the increase of resolution to T248 347	
  

spectral truncation (~50km grid resolution), and use of the unique way of bias correction 348	
  

of dynamically forecasted SST may all have contributed to the displayed fidelity of 349	
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FISH50. The deterioration of the skill from DJF to MAM season across all three models 350	
  

suggests some further investigation is required to discern the role of increasing lead time 351	
  

and the inherent seasonal nature of the climate system (e.g. the spring predictability 352	
  

barrier). Nonetheless, this study shows that coupled forecast systems may have reached a 353	
  

stage, wherein the forced forecast systems like FISH50 could be used to exploit the 354	
  

superiority of the SST forecasts to glean further seasonal prediction skill. The advantage 355	
  

of stand alone AGCM’s is that it is computationally less demanding to raise their 356	
  

resolution to levels that can then be more meaningful for application in other fields (e.g. 357	
  

hydrology, agriculture etc.). FISH50 in this study unlike in the boreal summer and fall 358	
  

seasons (in part I of the paper) do not seem to show as much of a benefit over the much 359	
  

coarser dynamical coupled ocean-atmosphere seasonal forecasts. However, it should be 360	
  

mentioned that all three models display hindcast skills, which is better than climatology.  361	
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 374	
  
Appendix I: The methodology for computing SSTOLF 375	
  

 SSTOLF is the observed low pass filtered SST in equation 1 of the main text. 376	
  

SSTOLF is used to replace the model climatology of SST in the process of bias correction. 377	
  

Unlike other bias correction techniques SSTOLF contains low frequency variations and the 378	
  

secular climate change signal. Using Extended Reynolds SST version 3 (ERSSTv3; 379	
  

Smith et al. 2008) at 2° resolution (SSTO) for the period 1870-2008 we first conduct a 380	
  

Multi-dimensional Ensemble Empirical Model Decomposition (MEEMD) analysis 381	
  

following Wu et al. (2009). MEEMD is a multi-dimensional (in space) data adaptive time 382	
  

series analysis of Ensemble Empirical Mode Decomposition (EEMD; Wu and Huang 383	
  

2009). EEMD seeks to determine the intrinsic modes of oscillations in the data on the 384	
  

principle of local scale separation, which are called Intrinsic Mode Functions (IMFs). 385	
  

Although the decomposition in MEEMD does not make use of information on spatial 386	
  

coherence of the dataset, the obtained evolution of SSTOLF are both temporally and 387	
  

spatially coherent (true to its low frequency feature), which exhibits large spatial scale 388	
  

features when the SSTOLF is mapped on a global grid: 389	
  

 390	
  

391	
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 391	
  
Appendix II: Comparison of FISH50 with the other National Multi-Model 392	
  

Ensemble (NMME) models 393	
  

The NMME project (http://www.cpc.ncep.noaa.gov/products/ctb/nmme/) hosted by 394	
  

International Research Institute for Climate and Society, Columbia University and 395	
  

maintained in real time at the NCEP Climate Prediction Center 396	
  

(http://www.cpc.ncep.noaa.gov/products/NMME/) are eight single tiered coupled ocean-397	
  

atmosphere models, which have conducted extensive seasonal hindcasts over the same 398	
  

time period as FISH50 and more. In fact NMME models have completed seasonal 399	
  

hindcasts for several lead times throughout the year and here we compare the AROC for 400	
  

tercile events of seasonal mean surface land temperature and precipitation from FISH50 401	
  

with the corresponding hindcasts of the NMME. 402	
  

 403	
  

Figure AII.1: AROC averaged over global oceans for (a) DJF, (b) MAM, over tropical 404	
  
oceans for (c) DJF, and (d) MAM for low, middle, and upper terciles of NMME and 405	
  
FISH50 precipitation. 406	
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 407	
  

Figure AII.2: AROC averaged over global land for (a) DJF, (b) MAM, over tropical land 408	
  
for (c) DJF, and (d) MAM for low, middle, and upper terciles of NMME and FISH50 409	
  
precipitation. 410	
  
 411	
  

 412	
  

Figure AII.3: Same as Fig. AII.3 but for surface land temperature. 413	
  

414	
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 541	
  
Table 1: FISH50 Experiment Design 542	
  
	
  543	
  

 544	
  

Seasonal hindcast feature Detail 

Length of each seasonal hindcast 

integration 

6 months 

Number of ensemble members for 

each seasonal hindcast 

6 (E1, E, E3, E4, E5, E6) 

Seasonal hindcast period  1982-2008 

E1 E2 E3 E4 E5 E6 Seasonal hindcast start date 

28 Nov, 

0000 

UTC 

29 Nov, 

0000 

UTC 

30 

Nov, 

0000 

UTC 

01 Dec, 

0000 

UTC 

02 

Dec, 

0000 

UTC 

03 

Dec, 

0000 

UTC 

Atmospheric initial conditions Borrowed for subsequent days from 28 Nov to 03 

Dec from the NCEP-DOE reanalysis (Kanamitsu et 

al. 2002) for each ensemble member and 

interpolated to the FISH50 grid 

Land initial conditions Interpolated from NCEP-DOE reanalysis and kept 

identical in all ensemble members for each season 
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 547	
  
Table 2: A brief outline of the physics of the FISH50 AGCM 548	
  

	
  549	
  

 550	
  

Parameterization Reference 

Cumulus parameterization Kain-Fritsch (Kain and Fritsch 1993; Kain 2004) 

Shallow convection Tiedtke scheme ( Tiedtke 1983) 

Boundary layer Nonlocal scheme (Hong and Pand 1996) 

Land surface NOAH (Chen and Dudhia 2001; Ek et al  2003) 

Gravity wave drag Pierrehumbert (Alpert et al 1988) 

Shortwave radiation M.-D. Chou (Chou and Lee 1996) 

Longwave radiation M.-D. Chou (Chou and Suarez 1994) 

Clouds Slingo 1987 
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Table 3: Details of the validation datasets used 554	
  
	
  555	
  

 556	
  
 557	
  

Global Dataset 
Name 

Variable Reference Resolution Period 
Available 

Climate 
Prediction 
Center Merged 
Analysis of 
Precipitation 
(CMAP) 

Precipitation Xie and Arkin 
(1997) 

2.5°x2.5° 1979-present 

Climate 
Research Unit 
version 3 
(CRUv3) 

Surface 
temperature 

Mitchell and 
Jones (2005) 

0.5°x0.5° 1900-present 
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 560	
  

 
Figure 1. The observed climatological SST for boreal (a) winter (DJF) season and (b) 
spring (MAM) season. The bias of hindcasted SST at zero lead for boreal winter season 
from (c) CFSv2, (e) CCSM3. Similarly, the bias of hindcasted SST at one season lead for 
boreal spring season from (d) CFSv2 and (f) CCSM3.0. The units are in . 
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 562	
  

 
Figure 2. The observed climatology SST computed over a period of 1955-1981 for (a) DJF 
season and (b) MAM season, and their corresponding differences with climatology computed 
over the period 1982-2008 for (c) DJF and (d) MAM. The units are in . 
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 565	
  

 
Figure 3. The observed climatology of precipitation computed over a period of 1982-1993 for 
(a) DJF and (b) MAM seasons. The corresponding climatology of precipitation from a single 
member seasonal hindcast for the period of 1982-1993 using the RAS convection scheme for (c) 
DJF (at zero lead) and (d) MAM (one season lean) season. Likewise the climatology of 
precipitation from a single member seasonal hindcast for the period of 1982-1993 using the KF2 
convection scheme for (e) DJF (at zero lead) and (f) MAM (one season lead). The units are in 
mm/day. 
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 567	
  

 
Figure 4. The climatological SST bias computed for (a) DJF season (at zero lead) and (b) 
MAM season (at one season lead) from FISH50. The observed SST climatology was 
computed over the period 1982-2008 as shown in Figs. 1a and 1b. The units are in . 
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 569	
  

 
Figure 5. The standard deviation of DJF seasonal mean SST from (a) observations, and 
seasonal hindcasts at zero lead from (b) FISH50, (c) CFSv2, and (d) CCSM3. Similarly 
the standard deviation of MAM seasonal mean SST from (e) observations, and seasonal 
hindcasts at one season lead from (f) FISH50, (g) CFSv2, and (h) CCSM3. The units are 
in . 
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 571	
  

 
Figure 6. The observed climatology of precipitation (1982-2008) in (a) DJF, and (b) 
MAM. The root mean square error of the ensemble mean precipitation for DJF (zero 
lead) for seasonal hindcasts from (c) FISH50, (e) CFSv2, and (g) CCSM3. Likewise, the 
root mean square error of the ensemble mean precipitation for MAM(one season lead) for 
seasonal hindcasts from (d) FISH50, (f) CFSv2, and (h) CCSM3. 
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Figure 7. The zonal mean climtological (a) winter (DJF) and (b) spring (MAM) 
precipitation from observations and the three seasonal hindcasts. 
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Figure 8. The observed climatology of surface temperature (1982-2008) in (a) DJF, and 
(b) MAM. The root mean square error of the ensemble mean T2m for DJF (zero lead) for 
seasonal hindcasts from (c) FISH50, (e) CFSv2, and (g) CCSM3. Likewise, the root 
mean square error of the ensemble mean T2m for MAM (one season lead) for seasonal 
hindcasts from (d) FISH50, (f) CFSv2, and (h) CCSM3. 
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Figure 9. The correlation of the ensemble mean precipitation for DJF (zero lead) from (a) 
FISH50, (c) CFSv2, and (e) CCSM3. Similarly, the correlation of the ensemble mean 
precipitation for MAM (one season lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
Statistically significant correlations at 90% confidence interval according to the t-test are 
shown. 
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Figure 10. The signal to noise ratio of precipitation for DJF season (zero lead) for (a) 
FISH50, (c) CFSv2, and (e) CCSM3. The signal to noise ratio of precipitation for MAM 
(one season lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
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Figure 11. The correlation of the ensemble mean T2m for DJF (zero lead) from (a) 
FISH50, (c) CFSv2, and (e) CCSM3. Similarly, the correlation of the ensemble mean 
precipitation for MAM (one season lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
Statistically significant correlations at 90% confidence interval according to the t-test are 
shown. 
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Figure 12. The signal to noise ratio of T2m for DJF season (zero lead) for (a) FISH50, 
(c) CFSv2, and (e) CCSM3. The signal to noise ratio of precipitation for MAM (one 
season lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
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Figure 13. The area under the relative operation characteristic curve (AROC) for (a) 
lower, (b) middle, and (c) upper tercile for DJF (zero season lead) from FISH50 
precipitation, Similarly, the area under the ROC for (d) lower, (e) middle, and (f) upper 
tercile for MAM (one season lead) from FISH50 precipitation. Area over 0.5 is colored 
and signifies higher skill than climatology. 
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Figure 14. Area under the ROC averaged over (a) global oceans, (b) tropical oceans, (c) 
global land, and (d) tropical land for low, middle, and upper terciles of CFSv2, CCSM3, 
and FISH50 precipitation in DJF and MAM. 
 594	
  
 595	
  

596	
  



	
   46	
  

 596	
  

 
Figure 15. The area under the relative operation characteristic curve (ROC) for (a) lower, 
(b) middle, and (c) upper tercile for DJF (zero season lead) from FISH50 T2m, Similarly, 
the area under the ROC for (d) lower, (e) middle, and (f) upper tercile for MAM (one 
season lead) from FISH50 T2m. Area over 0.5 is colored and signifies higher skill than 
climatology. 
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Figure 16. Area under the ROC averaged over (a) global land and (b) tropical land for 
low, middle, and upper terciles of CFSv2, CCSM3, and FISH50 temperatures in DJF and 
MAM. 
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