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Abstract 16 

This paper examines the statistics of daily maximum and minimum surface air 17 

temperature at weather stations in the Southeast United States as a function of El Niño 18 

Southern Oscillation (ENSO) and Arctic Oscillation (AO) phase. A limited number of 19 

studies address how ENSO and/or AO affect United States' daily – as opposed to monthly 20 

or seasonal – temperature averages. The details of the effect of ENSO or AO on the 21 

higher order statistics for wintertime daily minimum and maximum temperatures have 22 

not been clearly documented.  23 

 Quality-controlled daily observations collected from 1960 to 2009 from 272 24 

National Weather Service's Cooperative Observing Network stations throughout Florida, 25 

Georgia, Alabama, and South and North Carolina are used to calculate the first four 26 

statistical moments of minimum and maximum daily temperature distributions. It is 27 

found that, over the Southeast, winter minimum temperatures have higher variability 28 

than maximum temperatures, and La Niña winters have greater variability of both 29 

minimum and maximum temperatures. With the exception of Florida's peninsula, 30 

minimum temperatures are positively skewed, while maximum temperatures are 31 

negatively skewed. Stations in peninsular Florida exhibit negative skewness for both 32 

maximum and minimum temperatures. During the relatively warmer winters associated 33 

with either a La Niña or AO+, negative skewnesses are exacerbated and positive 34 

skewnesses are reduced. To a lesser extent, the converse is true of El Niño and AO-. 35 

ENSO and AO are also shown to have a statistically significant effect on the change of 36 

kurtosis of daily maximum and minimum temperatures throughout the domain.  37 

38 
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1. Introduction 39 

Understanding the statistical distribution of daily winter temperature extremes is of 40 

practical interest to the human endeavors in ecology, agriculture and utilities planning. 41 

This is particularly true for regions such as the southeast United States where winter 42 

hard freezes are a relatively rare and potentially catastrophic occurrence. The winter 43 

climate of the Southeast United States is strongly influenced by the phase of ENSO. 44 

During El Niño phase winters, the 300 hPa wind anomalies show an increase 45 

southwesterly flow over the Gulf of Mexico (Kennedy et al 2007) as the tropical/Pacific jet 46 

splits over North America, leading to an increased frequency of winter Gulf cyclones 47 

(Eichler and Higgins, 2006). In the southeast US, these contribute increased cloudiness 48 

(Angell and Korshover 1987, Angell 1990; Park and Leovy 2004) and frequent rains 49 

(Gershunov and Barnett 1998) to the region; as a result, the typical El Niño winter 50 

weather is wet and cool (Ropelewski and Halpert 1986,1987; Kiladis and Diaz 1989). 51 

During La Niña phase, the tropical/Pacific jet stream becomes a single zonal jet that is 52 

typically shifted northward (Smith et al 1998).  The storm tracks associated with mid-53 

latitude cyclones tend to stay north of the southeast U.S. (Eichler and Higgins 2006), 54 

limiting the amount of cold air that reaches the region; as a result, La Niña years, are 55 

generally warmer and drier in the Southeast (Ropelewski and Halpert 1986,1987; Kiladis 56 

and Diaz 1989). However, variability in the polar jet stream position can result in 57 

extreme cold outbreaks with either ENSO phase. In addition to ENSO phase, winter 58 

temperatures in the Southeast United States are strongly influenced by the Arctic 59 

Oscillation (AO)/North Atlantic Oscillation (NAO) and to some extent the Pacific/North 60 

America (PNA) teleconnections (Higgins et al 2002, Hagemeyer 2006).  61 
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 While seasonal averages can be used as a helpful guideline for climate application 62 

models, intra-seasonal extremes are often a more important factor for practical 63 

consequences – a single deep freeze event in South Florida can wreck havoc on the local 64 

agriculture (Attaway 1997). Certain agricultural crops, such as citrus and vegetables, 65 

grown in portions of the southeast U.S. during the winter and early spring are highly 66 

susceptible to damage from freezing temperatures.  A series of impact freezes in the 67 

1980s, following a serious freeze in 1977, left the citrus industry in Florida reeling.  68 

Approximately one third of the state’s commercial citrus trees were destroyed and the 69 

total monetary loss was in the billions of dollars (Miller 1991).  Freezing temperatures 70 

also have an impact on wildlife, such as, for example, the Florida manatee.  Mortality 71 

rates for manatees tend to have a strong seasonal emphasis in winter.  Manatees can die 72 

from hypothermia during unusually cold winters, as they are unable to increase heat 73 

production by metabolism to counter losses to the environment (O’Shea et al 1985).  74 

To understand the seasonal-scale risk of experiencing extreme cold/warm winter 75 

days, it is important to understand the changes in distributions of daily 76 

minimum/maximum temperatures under different large-scale regimes. Do these 77 

distributions simply shift to the left or right with ENSO or AO phase change? 78 

Atmospheric variables' statistics are not strictly Gaussian (e.g. Sura et al 2005), and 79 

daily minimum and maximum temperatures are no exception. A shift in their expected 80 

value (warmer during La Niña, colder during El Niño) does not guarantee a 81 

corresponding shift for the entire distribution. The current literature is ambiguous about 82 

the temperature extremes associated with ENSO phase.  Some sources suggest that 83 

extreme cold events are more likely with El Niño (which is associated with below-normal 84 

winter temperatures) (e.g. Gershunov 1998; Higgins et al 2002), or that extreme warm 85 
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events are more likely with La Niña (e.g. Wolter et al 1999). Others (e. g. Rogers and 86 

Rohli 1991; Hansen et al 1999, Smith and Sardeshmukh 2000) suggest that severe cold 87 

outbreaks may be more likely with La Niña.  88 

 Normal (Gaussian) distributions are fully described by their mean and standard 89 

deviation. For non-Gaussian distributions, higher moments need to be considered as well. 90 

The first four moments (mean, standard deviation, skewness and kurtosis) are generally 91 

sufficient to describe most atmospheric variables' distributions.  Several studies have 92 

documented the non-Gaussian nature of surface air temperatures (Toth and Szentimrey 93 

1990, Barnston 1993, Huth et al 2001, Ryoo et al 2004, Shen et al 2011). A handful of 94 

studies (Smith and Sardeshmukh 2000, Higgins et al 2002) have considered the higher 95 

(>1) statistical moments of surface temperatures in the United States under different 96 

ENSO and AO/NAO conditions. Both studies use gridded data – NCEP 2.5-degree 97 

reanalysis (Kalnay et al 1996) in the case of Sardeshmukh and Smith (2000), and 0.5-98 

degree COOP-station-based gridded data set (Janoviak et al 1999) in the case of Higgins 99 

et al (2002) – and examined the response of daily mean surface temperatures to different 100 

large-scale climate regime forcing. 101 

While analysis of gridded data provides useful insights, gridding tends to reduce 102 

the variance of observed temperatures (Tencer et al 2011) and is generally associated 103 

with introduction of biases in their means, especially in winter (De Gaetano and Belcher 104 

2006) and for maximum temperatures (De Gaetano and Belcher 2006, Tencer et al 2011). 105 

The errors introduced by gridding are highly region- and method-dependent (e.g. Shen et 106 

al 2005, DeGaetano and Belcher 2006, Rupp et al 2010, Tencer et al 2011, Berrocal et al 107 

2012) and a function of station density (Legg 2011). By its implicit smoothing, gridding 108 

filters out potentially valuable spatial detail at the local and regional scale that can be 109 
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gleaned from analysis of un-gridded station data, especially near terrain features (Tencer 110 

et al 2011, Legg 2011) and coastal boundaries (De Gaetano and Belcher 2006). In 111 

addition, averaging of daily minimum and maximum surface temperatures to obtain the 112 

daily average obscures the fact that the daily minimum and maximum surface 113 

temperatures often have dissimilar PDF shapes (Barnston 1993, Shen et al 2011) and 114 

disparate responses to the large-scale climate regimes. To illustrate this point, we 115 

constructed PDFs of daily minimum (tmin) and maximum surface temperatures (tmax) 116 

for two stations in the Southeast US – Charlotte, NC (Fig 1A) and Fort Lauderdale, FL 117 

(Fig 1B) under El Niño/La Niña and AO+/AO- regimes (see Table 1 and section 2.2 for the 118 

regime definition). Such separation of tmin and tmax makes it possible to appreciate, for 119 

example, that the warming of the expected values of the daily means associated with El 120 

Niño relative to La Niña is largely attributable to changes in the PDF of tmax but not 121 

tmin for Charlotte, and to both tmin and tmax for Ft. Lauderdale. The warming 122 

associated with AO+, on the other hand, stems mostly from changes in the tmin 123 

distribution for Ft. Lauderdale, but is evenly contributed by tmin and tmax for Charlotte. 124 

In addition to these shift of the expected values, distinct deformations of the PDFs are 125 

evident as well.  126 

While it is possible to produce a catalog of all stations’ distributions in different 127 

phases of these large-scale oscillations, this approach is impractical for two reasons:  the 128 

need for a very large number of plots – one for each temperature variable at each station 129 

in every climate regime – and the lack of depiction of large-scale patterns of variability 130 

across stations. Instead, in this study we summarize the PDFs and describe their 131 

geographical variability based on the distributions first four statistical moments. We 132 

examine station daily maximum (tmin) and minimum (tmax) temperatures, as well as 133 
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the daily average (tave) and diurnal range (trange) during different ENSO and AO 134 

phases. The data and methodology used for this study are described in section 2. Results 135 

and discussion are presented in section 3, and section 4 provides a summary and 136 

concluding remarks.  137 

2. Data and methodology 138 

2.1 Station Temperature Data 139 

We use quality controlled digital data from the Summary of the Day data set (DS3200 140 

and DS3206) supplied by the National Climatic Data Center (NCDC).  The daily 141 

measurements of maximum and minimum temperature are provided by the National 142 

Weather Service’s Cooperative Observation Program (COOP), which has reported these 143 

elements for over 100 years.  Each data set contains over 8,000 active observing stations 144 

(NCDC 2008), though for the purpose of this study, stations were used from the states of 145 

Alabama, Florida, Georgia, North Carolina and South Carolina.  146 

The observing record at each station from the five selected states is at least from 147 

1960-2009, although some stations have data as far back as the early 1900’s. For the 148 

purposes of this study, we selected only stations reporting since at least 1960. Stations 149 

that have more than five consecutive years of missing data were discarded, so that each 150 

station left met the criteria to use the multiple linear regression technique set forth by 151 

Smith (2007) to replace any missing data temperature at the station.  In case of missing 152 

data for a given station, correlations between the existing time series at this reference 153 

station and surrounding stations within a 50-mile radius are computed and stations with 154 

correlations greater than 0.6 are retained for use in reconstructing the reference station’s 155 

missing data.  The choice of 0.6 correlation cutoff was made by Smith (2007) as a 156 
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compromise between the need for high inter-station correlation and the need for 157 

sufficient number of surrounding stations to be used in the linear regression procedure. 158 

Once the useable surrounding stations have been identified, all data is de-trended and 159 

the seasonal cycle is removed before computing the multiple linear regressions to 160 

determine a residual value; that is then used replace the missing value at the reference 161 

station and the trend and seasonal cycle are then re-applied. For the present study, we 162 

use the January and February tmin and tmax between 1960 and 2009 at all 272 stations 163 

in Florida, Georgia, Alabama, North Carolina and South Carolina that satisfy the criteria 164 

above. Note that any potential concerns regarding the effects of station moves, 165 

instrumental or land-use changes during the study period are alleviated by the high 166 

degree of spatial coherence of our results. 167 

2.2 Climate Regime Definitions 168 

The ENSO phase (ENSO-neutral, El Niño, or La Niña) is defined based on the 169 

Multivariate ENSO Index (MEI) of Wolter and Timlin (1993), obtained from 170 

http://www.esrl.noaa.gov. The Jan-Feb MEI averages for each year between 1960 and 171 

2009 were calculated, and the 10 years with largest positive values were designated as El 172 

Niño years; similarly, the 10 years with the largest negative values were designated as 173 

La Niña. The AO phase (AO-neutral, AO+, or AO-) is defined based on the Arctic 174 

Oscillation index obtained from http://www.cpc.ncep.noaa.gov, and a similar ranking of 175 

years was performed to determine the 10 years with the highest positive Jan-Feb average 176 

AO value, and the 10 years with strongest negative AO values. The ENSO and AO phase 177 

for Jan-Feb of the years between 1960-2009 is summarized in Table 1.  178 

   179 

2.3 Methodology We opted for selecting exactly 10 years in each regime (El Niño, La 180 

http://www.esrl.noaa.gov/
http://www.cpc.ncep.noaa.gov/
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Niña, AO+ and AO-) in order to ensure sufficient amount of data points in each regime. 181 

Most years designated as non-neutral exceed +/- one standard deviation of the relevant 182 

index; all of them exceed +/- 0.85 standard deviations.  Due to the relatively short data 183 

record, we are unable to treat the effects of ENSO and AO separately. Undoubtedly, as 184 

evident from Table 1, there is a certain degree of overlap between ENSO and AO years. 185 

We acknowledge that separate consideration of each regime combination listed in Table 1 186 

would be ideal, had the data record been sufficiently long to populate each cell with a 187 

large number of years. However, given this data record limitation, we argue that 188 

considering ENSO and AO as independent forcings is justified based on the low 189 

correlation between the time series of the two indices (Higgins et al 2002) and the 190 

consequential fact that the both El Niño and La Niña years contain a similar number of 191 

AO+ (three vs. four) or AO- (two vs. one) years. 192 

 We analyze the first four statistical moments – mean, variance, skewness and 193 

kurtosis – of the wintertime daily air surface temperature variables (maximum, 194 

minimum, average, and range) for stations in the Southeast United States under 195 

different large-scale climate regimes. As a first step, the seasonal cycle is removed from 196 

the data set, i.e., climatological values for each date are calculated and subtracted from 197 

each data point. Further work is shown in terms of the resulting anomalies. 198 

 The statistical moments are defined as follows. The mean of a station variable x is 199 

calculated as . Here R is a given regime (one of: ENSO-200 

neutral, El Niño, La Niña, AO-neutral, AO+ or AO-),  is the number of years in the 201 

dataset that fall within the selected regime, R and n is the number of days between 1 202 

January and 28 February (i.e., 58). The corresponding standard deviation is given by 203 

 



xR 
1

nNR
x(year,day)

day1Jan

28Feb


yearR



 



NR
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. Variance, the second statistical moment, is defined 204 

as the square of the standard deviation. In the remainder of the text for simplicity we 205 

discuss the standard deviation instead of the variance.  206 

Skewness is a measure of the asymmetry of the distribution. It is defined as 207 

. For a Gaussian variable  is zero. Negative 208 

(positive)  describes a distribution for which the left (right) tail is longer than the right 209 

(left) and whose mean value is smaller (larger) than its median value.  210 

Kurtosis is a measure of the sharpness of the distribution. It is defined as 211 

. For a Gaussian variable  is 3. Excess kurtosis is 212 

defined as . Negative (positive) excess kurtosis describes a distribution that is 213 

flatter (sharper) than the normal distribution, and whose tails are lighter (heavier).  214 

2.4 Error and Significance Estimation 215 

To correctly quantify the non-Gaussianity of temperature data we also need to specify the 216 

statistical errors we expect in our skewness and kurtosis estimates. The exact standard 217 

errors (remember that approximately 68%/95%/99% of close-to-Gaussian data can be 218 

found between ±1/2/3 standard errors) of skewness and kurtosis depend on their 219 

underlying distribution but can be approximated for weakly non-Gaussian data as 220 

 and , respectively, where is the effective number of 221 

independent observations (e.g., Brooks and Carruthers 1953). It has been shown (e.g., 222 

Perron and Sura 2012) that the formulas for  and 
 
are good approximations 223 
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even for strongly non-Gaussian data. The standard error estimates for the mean and 224 

standard deviation can be related to the standard deviation magnitude using the 225 

expressions  and .  226 

 As we are mainly interested in the non-Gaussian statistics of the temperature 227 

data, let us estimate the expected standard errors for skewness and kurtosis. For the 228 

present observational analysis we used 50 years of data (1960 – 2009). Therefore, the 229 

entire wintertime (January, February) record consists of, neglecting February 29th of leap 230 

years, 50  59 = 2950 days. As our climate regime definition uses the ten years with the 231 

highest/lowest ENSO and AO indices, we have 590 days in each distinct ENSO and AO 232 

climate state. Of course, the neutral states contain the remaining 30 years with 1770 233 

days. If we now make the realistic assumption that surface air temperature has a 234 

decorrelation time scale of about 3 days all over the southeastern U.S. (Barnston, 1993), 235 

we can estimate the number of independent observations in the ENSO and AO climate 236 

regimes as (the total number of days in each regime, 590, divided by the 237 

decorrelation time scale of 3 days). In the neutral state there are  (the total 238 

number of days in the neutral condition, 1770, divided by the decorrelation time scale) 239 

independent records. Thus, the standard errors of skewness and kurtosis in each climate 240 

regime are  and , respectively. The standard errors in the neutral 241 

phases, due to the larger number of independent observations, are somewhat smaller, 242 

namely and .  As we are also interested in the skewness and 243 

kurtosis differences between ENSO/AO regimes and neutral phases, we use Gauss’ 244 

propagation of uncertainty law to estimate the standard errors of the differences:245 
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, . 
 246 

In light of the following presentation and discussion of skewness and kurtosis 247 

maps, the error estimates mean that most of the non-Gaussian skewness structures we 248 

present in this paper (regimes and regime differences) are significant on the 95% level 249 

because the amplitudes of almost all the large-scale skewness features fall outside the 250 

plus/minus two-standard error range. Most of the kurtosis patterns are also significant 251 

on the 95% level, yet there are situations (i.e., variables and regions) where the 252 

significance level goes down to 68% (plus/minus one standard error). Therefore, overall 253 

we can be confident that the results shown here are not statistical artifacts but represent 254 

tangible physical phenomena. 255 

3. Results and discussion 256 

3.1 Neutral years 257 

In neutral years (for brevity, in this section, these are defined with respect to ENSO; 258 

results for neutral years defined with respect to AO are nearly identical), the expected 259 

values of the distributions of the anomalies of tmax and tmin (Fig. 2 panels A[1], B[1]) 260 

and trange and tave (not shown) are all close to zero, indicating that it is unlikely that 261 

ENSO-neutral years are biased by the presence of an AO signal, despite the relatively 262 

larger number of AO- years in the ENSO-neutral regime (see Table 1). Temperatures’ 263 

standard deviations (Fig. 2 panels A[2], B[2]) generally decrease southward and are 264 

smallest in the Florida peninsula (hereafter FP), with the exception of tmin, whose 265 

standard deviation increases westward and is relatively uniform in the north-south 266 

direction, although it is somewhat smaller in the southernmost parts of FP. The 267 

geographic distribution of skewness varies amongst the different temperature variables.  268 
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Maximum temperatures have a left (negative) skewness that increases southward, 269 

reaching the largest negative values in FP (Fig. 2, panel A[3]). In contrast, minimum 270 

temperatures are positively skewed in the non-FP part of the domain and negatively 271 

skewed in FP (Fig. 2, panel B[3]). The diurnal temperature range is weakly negatively 272 

skewed outside of FP and weakly positively skewed in FP (not shown). The daily mean 273 

temperature has negligible skewness with the exception of FP where it has pronounced 274 

negative skewness (not shown). The geographic distribution of excess kurtosis also varies 275 

among the four temperature variables. For tmax (Figs 2, panel A[4]) and trange (not 276 

shown) the excess kurtosis is increasingly negative to the north outside of FP and with 277 

some positive values in the southern portion of FP. The excess kurtosis of tmin (Figs 2, 278 

panel B[4]) and tave (not shown) is negative, with the largest values found in the Big 279 

Bend region of Florida.  280 

 The physical mechanisms responsible for the climatological structure of 281 

temperatures’ first four statistical moments are quite complex and mostly beyond the 282 

scope of this study. Relevant considerations should include the climatological frequency of 283 

cloud-free skies, which increases southward (Winsberg 2003), the much stronger impact 284 

of sea surface temperatures in FP (ibid), and the climatological frequency and intensity of 285 

cold and warm fronts throughout the region. Cold frontal passage frequency generally 286 

decreases southward to FP (hence the larger temperature variances to the north); 287 

however, since fronts decelerate in their penetration to the south – and frequently become 288 

stationary (Hardy and Henderson 2003), the duration of frontal passage-related weather 289 

increases southward (DiMego et al. 1976). It takes a very strong – and tus infrequent – 290 

arctic front to penetrate all the way to FP, bringing very low humidities and extremely 291 

cold temperatures (Winsberg 2003) to the area (hence the increasingly negative skewness 292 
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to the south). The diurnal temperature range is positively correlated with the frequency 293 

of cloudiness, precipitation and humidity (Karl et al. 1987; Leathers et al. 1998); 294 

consequently, the largest diurnal temperature ranges are found in FP (Leathers et al. 295 

1998).  296 

Scatter diagrams (Fig. 3) provide a summary of the differences in distribution 297 

shapes of tmin and tmax under neutral conditions. Whether the latter are defined on the 298 

basis of ENSO or AO makes little difference (compare the left and right columns of Fig. 299 

3), which illustrates the relative robustness of the results. With the exception of Florida 300 

stations (red circles), the standard deviations of minimum and maximum temperatures 301 

are of comparable magnitudes, skewnesses are of comparable (and small, <0.5) 302 

magnitudes but of opposing sign (negative for tmax, positive for tmin), and the kurtoses 303 

are generally smaller for tmax. For Florida stations, on the other hand, the standard 304 

deviation of tmin is larger than that of tmax, both tmin and tmax are negatively skewed, 305 

with the left (negative) skewness of tmin stronger than that of tmax, and the kurtosis of 306 

tmax is larger than that of tmin.  307 

3.2 ENSO phase 308 

We find that ENSO phase has different effects on the expected values of tmax vs. tmin 309 

(Fig 4, panels A[1] and B[1] vs. Fig 4, panels C[1] and D[1]): both are warmer (relative to 310 

the neutral ENSO phase values) in La Niña winters, while El Niño cools tmax but has a 311 

mixed effect on tmin (generally cooling in FP and warming elsewhere). A likely 312 

explanation for this is that during El Niño winters there is an increased number of Gulf 313 

storms (Eichler and Higgins, 2006); the air masses associated with such storms are not 314 

particularly cold, but the increase in cloudiness (Angell et al 1990; Park and Leovy 2004) 315 

restricts daytime surface warming; this same cloudiness, however, restricts the nighttime 316 
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radiative cooling. As a result of the shifts in the distributions of tmin and tmax, the 317 

diurnal temperature range increases (relative to the neutral ENSO phase values) in La 318 

Niña years and decreases in El Niño years, consistent with the relationship of diurnal 319 

temperature range and precipitation and cloudiness discussed by Karl et al. (1987) and  320 

Leathers et al. (1998). The absolute values of the temperature range change associated 321 

with La Niña are smaller than those associated with El Niño. The daily mean 322 

temperatures are increased in La Niña winters and decreased in El Niño winters, with 323 

the effect’s magnitude being somewhat weaker in the latter.  324 

The standard deviation of tmax and tmin (Fig. 4, panels A[2], B[2], C[2], D[2]) and 325 

tave (not shown) is increased in La Niña years and reduced in El Niño years for the 326 

northern portions of the domain, with the amplitude of the response being stronger 327 

during El Niño. Interestingly, both El Niño and La Niña years see a reduction of standard 328 

deviation for these variables over FP. The diurnal temperature range’s standard 329 

deviation is not affected by the ENSO phase in any systematic way.  330 

The magnitude of negative skewness for tmax is reduced in FP in El Niño years 331 

and increased in much of the domain in La Niña years (Fig. 4, panels A[3], B[3]). For 332 

tmin (Fig. 4, panels C[3], D[3]) the results are similar, except that the La Niña effect is 333 

more confined to FP. This is also reflected in the daily averages. The skewness of the 334 

diurnal temperature range does not respond to the ENSO phase in any systematic way  335 

(not shown).  336 

The north-south gradient of the kurtosis of tmax in neutral years is exacerbated in 337 

La Niña years and reduced in El Niño years (Fig. 4, panels A[4], B[4]). The distribution of 338 

tmin is sharpened in the northern parts of the domain (to the point of becoming sharper-339 

than-Gaussian) during El Niño years (Fig 4, panels C[4], D[4]). Tmin’s kurtosis is also 340 
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increased in FP during La Niña years and decreased in El Niño years. The kurtosis of 341 

trange is generally reduced in El Niño years and not systematically affected in La Niña 342 

years (not shown). In La Niña years, the behavior of tave’s kurtosis is similar to that of 343 

tmin, while in El Niño years it is similar to that of tmax. In terms of absolute values, El 344 

Niño affects the kurtoses of tmin and tave more than La Niña does. 345 

3.3 AO phase 346 

The expected values of tmax, tmin (Fig. 5, panels A[1], B[1], C[1], D[1]), trange and tave 347 

(not shown) are increased in AO+ and decreased in AO-, the latter with the exception of 348 

trange, which does not have a uniform response to AO-. The standard deviations of tmax, 349 

tmin (Fig. 5, panels B[2] and C[2]) and tave are decreased in AO+ and increased in AO- 350 

(with the exception of FP, where the standard deviation of tmin is decreased in both 351 

cases). The standard deviation of trange does not have a uniform response to the AO 352 

phase. The skewness anomaly of tmax (Fig. 5, panels A[3] and B[3]) and tave is negative 353 

during AO+ and positive during AO-; for tmin (Fig. 5, panels C[3] and D[3]) and trange, 354 

the effect of AO phase on skewness is minimal. The tmax kurtosis (Fig. 5, panel A[4]) is 355 

increased in much of the domain and especially in Florida during AO+. During AO- (Fig. 356 

5, panel B[4]), stations further north exhibit increased kurtosis, while those in FP have 357 

flattened distributions. The sharpening of distributions outside Florida and flattening in 358 

FP during AO-, as well as the sharpening of distributions in FP is also seen in tmin (Fig. 359 

5, panels C[4] and D[4]), trange and tave. 360 

3.4 Discussion 361 

The warmest winters on record are frequently – but not always – associated with 362 

either a positive AO phase or with La Niña (see years’ superscripts in Table 1, indicating 363 

the ranking of the 10 warmest and coldest Jan-Feb years between 1960 and 2009 for the 364 
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Southeast US, based on data from the National Climatic Data Center (NCDC) at 365 

http://www7.ncdc.naa.gov/CDO/cdo). Similarly, the coldest years are frequently – but not 366 

always – associated with a negative AO phase or with El Niño (subscripts in Table 1). 367 

Still, forty percent of the extreme warm/cold years occur during years that are neutral 368 

with respect to both AO and ENSO.   369 

Our results indicate that ENSO’s effect on average temperatures is primarily 370 

manifested through shifts in the expected values of the daily temperature maxima. The 371 

spatial distribution of the expected value shifts is strongly reminiscent of the 372 

precipitation anomaly distribution associated with La Niña/El Niño phases, suggesting 373 

that the driving mechanism behind the tmax response is the corresponding 374 

decrease/increase of cloudiness which suppresses/promotes daytime radiative warming of 375 

the surface temperatures. Daily minimum temperatures are affected to a lesser degree, 376 

suggesting that the El Niño-related increase in cloudiness promotes the suppression of 377 

nighttime radiational cooling that partially compensates for the cooling of daytime 378 

temperatures. In contrast, the AO effect on average temperatures is manifested through 379 

evenly matched shifts in both the minimum and maximum temperatures. This can be 380 

explained by the fact that changes in the AO phase, unlike changes in the ENSO phase, 381 

are directly related to the frequency of high-latitude frontal systems penetrating into the 382 

Southeast. The surface temperature changes brought about by such systems are 383 

associated with the advection into the area of very cold air instead of with cloudiness-384 

dominated radiative effects.  It should be noted, however, that despite the much stronger 385 

AO (compared to ENSO) signal in the surface temperatures in the Southeast, it is of 386 

lesser practical consequence, because the predictability of AO, unlike that of ENSO, is 387 

limited.  388 
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In addition to shifts in the expected values of the daily minimum and maximum 389 

surface temperatures, our study demonstrates that there are statistically significant 390 

large-scale changes in the higher moments of the temperature distributions that may 391 

affect the likelihood of experiencing extreme cold outbreaks. For example, in Southern 392 

Alabama and FP, La Niña winters (which are, on average, warmer than neutral) manifest 393 

increased standard deviation, increased negative skewness and increased kurtosis of 394 

daily maximum temperatures. Increased negative skewness and increased kurtosis are 395 

seen in the warm regimes (AO+ and La Niña) for both tmin and tmax in FP. These 396 

increases translate into thicker and longer left tails of the distributions and, therefore, in 397 

relatively high likelihood of experiencing temperatures significantly colder than the 398 

expected (warm) value (see Fig. 1, B[1] and B[3] for a visual illustration). The use of 399 

station (as opposed to gridded) data in the present study makes it possible to fully 400 

appreciate the statistically significant specific behavior of peninsular Florida’s 401 

temperatures compared to the remainder of the Southeast.  402 

4. Summary 403 

Our analysis confirms that the distributions of winter daily maximum and minimum 404 

temperature anomalies are distinctly non-Gaussian. The shapes of their distributions 405 

have coherent spatial structures, with pronounced north-to-south gradients. At most 406 

stations, the PDFs of tmin and tmax have distinctly different shapes. The effects of 407 

ENSO and AO on daily min/max temperatures go beyond mere shifts in the means, but 408 

also affect the distributions’ shape in a disparate, spatially coherent and statistically 409 

significant manner. The spatial distribution of the first four statistical moments for tmin 410 

and tmax,  as well as a gross summary of the sign of their changes under ENSO or AO 411 

regime conditions is summarized in Table 2.  412 
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In the warm regimes (La Niña and AO+) compared to neutral, a larger effect is 413 

seen in the expected values of tmax than of tmin; magnitudes are similar between the La 414 

Niña and AO+ responses. With the exception of FP, the standard deviation of both tmin 415 

and tmax increases in La Niña, and decreases in AO+ years. In both La Niña and AO+ 416 

years tmax is more negatively skewed than in neutral years over most of the domain; the 417 

skewness of tmin is unchanged except in south Florida. Distributions of tmax are 418 

sharpened for most of the domain in AO+ years, and for Florida and the Gulf Coast in La 419 

Niña years. Tmin distributions are sharpened in South Florida for both warm regimes.  420 

In the cold regimes (El Niño and AO-) compared to neutral, cool anomalies are seen 421 

in the expected values of tmax for El Niño and cold anomalies in both tmax and tmin for 422 

AO-. With the exception of Florida, the standard deviation is strongly decreased in El 423 

Niño years and slightly increased in AO- years. El Niño reduces the negative skewness of 424 

tmin and tmax in Florida; AO- increases the positive skewness of tmax in South Florida.  425 

Let us end this paper with several thoughts on potential utilizations and future 426 

research. The documented values of the first four statistical moments at individual 427 

stations within each regime has the potential to be used in practical applications, such 428 

as, for example, the generation of synthetic data for agricultural crop yields or risk 429 

assessment models. To that end, future work is needed to develop a simple relationship 430 

between the distribution’s statistical moments and threshold exceedance probabilities. 431 

How could that be done? It is possible to relate the first four statistical moments of a 432 

variable’s distribution to the probability of exceedance of any chosen threshold values 433 

given some simple assumptions. For example, Sura and Sardeshmuhk (2008) and 434 

Sardeshmukh and Sura (2009) developed a general stochastic model (i.e., a null-435 

hypothesis) for the non-Gaussian statistics of weather and climate variability that has 436 
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been verified for various atmospheric and oceanic variables (Sura 2011) 437 

In addition, if indeed changes in the higher moments alter the likelihoods of winter 438 

temperature extremes, the accurate representation of these moments should be an 439 

important consideration in the interpretation of climate and climate change modeling 440 

studies. A consequent question to follow up on, therefore, is the extent to which global 441 

and regional circulation models (or, for that matter, reanalyses) are indeed capable of 442 

accurately representing the higher moments of surface temperature distributions and the 443 

changes in such distributions associated with large-scale climate signals. This question is 444 

addressed in a forthcoming paper.  445 
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Table 1: Summary of the ENSO and AO phase in Jan-Feb for the years 1960-2009. A 561 

superscript in parentheses indicates an year’s rank amongst the ten years with warmest Jan-562 

Feb; a subscript in parentheses indicates an year’s rank amongst the ten years with coldest 563 

Jan-Feb.  564 

 565 

 El Niño La Niña ENSO-neutral 

AO+ 1973, 1992, 1993 1976, 1989(5), 2000, 

2008 

1975(3), 1990(1), 2002 

AO- 1966(10), 1978 1963(5) 1960, 1969, 1970(6), 1977(2), 

1985(8), 1986, 2004 

AO 

neutral 

1983, 1987(1), 1995, 

1998(6), 2003 

1962, 1967, 1971, 

1974(2), 1999(4) 

 

1961, 1964, 1965, 1968(3), 

1972, 1979(4), 1980, 1981(9), 

1982, 1984, 1988(7), 1991(7), 

1994, 1996, 1997(8), 2001, 

2005(9), 2006(10), 2007, 2009 

566 
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Table 2: Summary of the first four statistical moments of daily maximum and minimum surface 567 

air temperatures for the Southeast in Jan-Feb in neutral years, and deviations from neutral 568 

years during ENSO and AO phases. A +/(-) sign indicates a positive/(negative)-valued change 569 

in the given regime relative to neutral year values. FP/NFP stands for Florida peninsula/not-570 

Florida peninsula. Whenever a sign appears by itself, it applies to both FP and NFP. If only 571 

one of FP/NFP is mentioned, the change in the remaining region is negligible.  572 

 573 

 574 

Regime Variable Mean Standard 

Deviation 

Skewness Excess Kurtosis 

Neutral 

Tmax 0 
decreasing 

southward 

negative; 

largest 

magnitude in FP 

negative in NFP; 

positive in FP 

Tmin 0 
more uniform  

N-S gradient 

positive in NFP; 

negative in FP 

negative; most 

negative in 

Florida’s Big Bend 

La Niña 

minus 

neutral 

Tmax + 
+ in NFP 

- in FP 

- + in FP 

Tmin + 
+ in NFP 

- in FP 

- in FP + in FP 

El Niño 
Tmax - - + in FP - in FP 
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minus 

neutral Tmin 

+ in NFP  

- in FP 

- + in FP 

+ in NFP 

 - in FP 

AO+ 

minus 

neutral 

Tmax + - - + 

Tmin + - - in FP 

- in NFP 

 + in FP 

AO- 

minus 

neutral 

Tmax - + + + in NFP 

Tmin - + + in FP + in NFP 

 575 

 576 

577 
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List of Figures: 578 

Fig. 1: PDF distributions for (A) Charlotte, NC and (B) Ft. Lauderdale, FL of winter daily 579 

tmax (A[1], A[2]; B[1], B[2]) and tmin (A[3], A[4]; B[3], B[4]) separated by ENSO phase 580 

(A[1], A[3]; B[1], B[3]) and AO phase (A[2], A[4]; B[2], B[4]). Solid black lines correspond 581 

to the warm regimes (either La Niña or AO+) and solid gray lines correspond to the cold 582 

regimes (either El Niño or AO-). Dashed lines indicate the respective expected value. 583 

Fig. 2: Statistical moments of (A) tmax and (B) tmin during neutral years. Mean, 584 

standard deviation, skewness and excess kurtosis in subpanels [1]-[4] respectively. 585 

Horizontal color bar applies to the skewness and excess kurtosis (subpanels [3] and [4]). 586 

Fig. 3: Relationship between the tmin and tmax standard deviation (top), skewness 587 

(middle) and kurtosis (bottom) for the neutral state defined based on ENSO (left) and AO 588 

(right). Stations in Florida are represented by red circles. 589 

Fig. 4: Difference between the means, standard deviations, skewnesses and kurtoses 590 

(subpanels [1]-[4] respectively) of (A) tmax of La Niña vs. neutral years, (B) tmax of El 591 

Niño vs. neutral years, (C) tmin of La Niña vs. neutral years, and (D) tmin of El Niño vs. 592 

neutral years. Small color bars apply to the mean (subpanels [1]); the large color bar 593 

applies to the standard deviation, skewness and excess kurtosis (subpanels [2]-[4]). 594 

Fig. 5: Difference between the means, standard deviations, skewnesses and kurtoses 595 

(subpanels [1]-[4] respectively) of (A) tmax of AO+ vs. neutral years, (B) tmax of AO- vs. 596 

neutral years, (C) tmin of AO+ vs. neutral years, and (D) tmin of AO- vs. neutral years. 597 

Small color bars apply to the mean (subpanels [1]); the large color bar applies to the 598 

standard deviation, skewness and excess kurtosis (subpanels [2]-[4]). 599 

 600 
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 605 
Fig. 1: PDF distributions for (A) Charlotte, NC and (B) Ft. Lauderdale, FL of winter daily 606 

tmax (A[1], A[2]; B[1], B[2]) and tmin (A[3], A[4]; B[3], B[4]) separated by ENSO phase 607 

(A[1], A[3]; B[1], B[3]) and AO phase (A[2], A[4]; B[2], B[4]). Solid black lines correspond 608 

to the warm regimes (either La Niña or AO+) and solid gray lines correspond to the cold 609 

regimes (either El Niño or AO-). Dashed lines indicate the respective expected value.610 
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(A) tmax, neutral years    (B) tmin, neutral years 611 

 612 
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 614 

 615 

 616 

Fig. 2: Statistical moments of (A) tmax and (B) tmin during neutral years. Mean, 617 

standard deviation, skewness and excess kurtosis in subpanels [1]-[4] respectively. 618 

Horizontal color bar applies to the skewness and excess kurtosis (subpanels [3] and [4]).  619 

  620 

[4] [3] 

[1] [2] 

[4] [3] 

[2] [1] 



 32 

 621 

Fig. 3: Relationship between the tmin and tmax standard deviation (top), skewness 622 

(middle) and kurtosis (bottom) for the neutral state defined based on ENSO (left) and AO 623 

(right). Stations in Florida are represented by red circles. 624 
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(A) tmax, La Niña     (B) tmax, El Niño 625 

  626 
 627 

(C) tmin, La Niña        (D) tmin, El Niño 628 

     629 
 630 

Fig. 4: Difference between the means, standard deviations, skewnesses and kurtoses 631 

(subpanels [1]-[4] respectively) of (A) tmax of La Niña vs. neutral years, (B) tmax of El 632 

Niño vs. neutral years, (C) tmin of La Niña vs. neutral years, and (D) tmin of El Niño vs. 633 

neutral years. Small color bars apply to the mean (subpanels [1]); the large color bar 634 

applies to the standard deviation, skewness and excess kurtosis (subpanels [2]-[4]). 635 
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(A) tmax, AO+      (B) tmax, AO- 639 

  640 
 641 

(C) tmin, AO+         (D) tmin, AO- 642 

  643 
 644 

Fig. 5: Difference between the means, standard deviations, skewnesses and kurtoses 645 

(subpanels [1]-[4] respectively) of (A) tmax of AO+ vs. neutral years, (B) tmax of AO- vs. 646 

neutral years, (C) tmin of AO+ vs. neutral years, and (D) tmin of AO- vs. neutral years. 647 

Small color bars apply to the mean (subpanels [1]); the large color bar applies to the 648 

standard deviation, skewness and excess kurtosis (subpanels [2]-[4]). 649 
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